黔南民族师范学院《人工智能程序设计实验》2023-2024学年第二学期期末试卷_第1页
黔南民族师范学院《人工智能程序设计实验》2023-2024学年第二学期期末试卷_第2页
黔南民族师范学院《人工智能程序设计实验》2023-2024学年第二学期期末试卷_第3页
黔南民族师范学院《人工智能程序设计实验》2023-2024学年第二学期期末试卷_第4页
黔南民族师范学院《人工智能程序设计实验》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页黔南民族师范学院《人工智能程序设计实验》

2023-2024学年第二学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、人工智能中的联邦学习是一种新兴的技术。以下关于联邦学习的说法,不正确的是()A.联邦学习可以在保护数据隐私的前提下,实现多个参与方之间的模型训练和共享B.解决了数据在不同机构之间难以流通和共享的问题C.联邦学习的通信开销较大,限制了其在大规模数据上的应用D.联邦学习技术已经非常成熟,不存在任何技术挑战和安全风险2、人工智能在艺术创作领域也有所涉足,例如音乐生成和图像创作。以下关于人工智能在艺术创作中的描述,不正确的是()A.可以根据给定的风格和主题生成新的音乐作品和图像B.人工智能创作的艺术作品具有独特的创新性和表现力C.人工智能在艺术创作中完全取代了人类艺术家的创造力和情感表达D.引发了关于艺术本质和创造力的思考和讨论3、人工智能中的迁移学习可以利用已有的预训练模型来加速新任务的学习。假设要将一个在大规模图像数据集上训练好的模型迁移到医学图像分析任务中,以下关于迁移学习的步骤,哪一项是不准确的?()A.冻结预训练模型的部分层,只训练特定任务相关的层B.直接在新的医学图像数据集上微调整个预训练模型C.对新的数据集进行数据增强,以增加数据的多样性D.分析预训练模型和新任务之间的差异,选择合适的迁移策略4、图像识别是人工智能的常见应用之一。假设要开发一个能够准确识别各种动物的图像识别系统,以下关于图像识别技术的描述,正确的是:()A.仅仅依靠像素级的特征提取就能实现高精度的图像识别,无需考虑对象的形状和结构B.深度学习模型在图像识别中总是能够自动学习到最有效的特征,无需人工干预特征设计C.对于复杂的图像场景,传统的图像识别方法比基于深度学习的方法更具优势D.图像识别系统的性能不受图像质量、光照条件和拍摄角度等因素的影响5、人工智能在农业领域的应用可以帮助提高农作物产量和质量。假设要开发一个能够监测农作物病虫害的系统,以下关于数据采集的方式,哪一项是最有效的?()A.依靠农民的人工观察和报告,将信息输入系统B.使用无人机搭载的图像传感器,定期拍摄农田图像C.仅在农作物出现明显病虫害症状时进行数据采集D.随机选择农田的部分区域进行数据采集,以节省成本6、强化学习是一种通过与环境交互来学习最优策略的方法。假设有一个机器人需要通过学习在复杂的环境中行走,并且根据行走的效果获得奖励或惩罚。以下关于强化学习的描述,哪一项是不准确的?()A.智能体通过不断尝试和错误来改进策略B.奖励信号对于智能体的学习至关重要C.强化学习不需要对环境进行建模D.智能体的最终目标是最大化累积奖励7、在一个利用人工智能进行能源管理的系统中,例如优化建筑物的能源消耗或电网的调度,以下哪个方面的考虑可能是至关重要的?()A.实时数据采集和处理B.精准的预测模型C.多目标优化策略D.以上都是8、在人工智能的模型评估中,需要选择合适的指标来衡量模型的性能。假设一个图像分类模型,以下关于模型评估指标的描述,正确的是:()A.准确率是唯一重要的评估指标,其他指标如召回率和F1值都不重要B.对于不平衡的数据集,准确率可能会产生误导,应该使用更合适的指标如召回率和F1值C.模型评估指标只与模型的架构有关,与数据分布无关D.选择评估指标时不需要考虑具体的应用场景和需求9、在人工智能的可解释性研究中,对于一个复杂的深度学习模型,假设需要向用户解释模型的决策依据和输出结果。以下哪种方法能够提供更直观和易于理解的解释?()A.特征重要性分析,确定输入特征对输出的影响B.可视化中间层的激活值C.生成文本解释,描述模型的推理过程D.以上都是10、人工智能中的计算机视觉技术能够让计算机理解和分析图像和视频内容。假设要开发一个能够实时监测交通流量和识别车辆类型的系统,需要在不同的天气和光照条件下准确地检测和分类车辆。以下哪种计算机视觉技术或方法在这种复杂场景下具有更好的鲁棒性和准确性?()A.传统的图像处理方法B.基于特征提取的方法C.深度学习中的目标检测算法D.光流法11、人工智能在农业领域的应用可以帮助提高农作物产量和质量。假设要开发一个系统来监测农田中的病虫害情况,需要能够准确识别病虫害的类型和严重程度。以下哪种图像分析技术和机器学习算法的组合在这个任务中最为有效?()A.图像分割技术结合决策树算法B.目标检测技术结合支持向量机算法C.特征提取技术结合朴素贝叶斯算法D.深度学习中的卷积神经网络结合随机森林算法12、在人工智能的研究中,可解释性是一个重要的问题。假设开发了一个用于医疗诊断的人工智能模型,以下关于模型可解释性的描述,哪一项是不正确的?()A.解释模型的决策过程和依据,有助于提高医生对诊断结果的信任度B.特征重要性分析可以帮助理解哪些输入特征对诊断结果影响较大C.深度学习模型由于其复杂性,无法进行任何形式的解释D.开发具有可解释性的人工智能模型对于医疗等关键领域至关重要13、人工智能中的强化学习算法在机器人足球比赛中可以训练机器人球员的策略。假设要让机器人球队在比赛中取得更好的成绩,以下哪个方面是强化学习算法需要重点优化的?()A.球员的动作控制B.团队的协作策略C.球场环境的建模D.对手行为的预测14、人工智能在农业领域的应用具有很大潜力。假设要利用人工智能技术实现农作物的病虫害监测,以下关于这种应用的描述,正确的是:()A.可以通过分析农作物的图像和传感器数据,及时发现病虫害的迹象B.人工智能系统能够完全替代农民的经验和判断,独立完成病虫害的防治工作C.由于农作物生长环境的复杂性,人工智能在病虫害监测中的应用效果有限D.安装在农田中的监测设备越多,人工智能病虫害监测系统的准确性就越高15、人工智能中的联邦学习是一种新兴的技术,旨在保护数据隐私的前提下进行模型训练。假设多个机构想要联合训练一个人工智能模型,但又不希望共享各自的数据。那么,联邦学习是如何实现这一目标的?()A.将所有数据集中到一个中心服务器进行训练B.每个机构只上传模型参数,在云端进行聚合C.通过加密技术直接共享原始数据进行训练D.不需要数据交互,各自独立训练模型二、简答题(本大题共4个小题,共20分)1、(本题5分)简述人工智能在密码学中的应用。2、(本题5分)简述人工智能在促进区域协调发展和城乡一体化中的作用。3、(本题5分)解释人工智能在智能企业文化传播中的方法。4、(本题5分)解释主动学习的原理和应用场景。三、操作题(本大题共5个小题,共25分)1、(本题5分)在Python中,运用萤火虫算法解决一个优化问题。定义萤火虫的发光强度和吸引机制,展示算法的收敛情况。2、(本题5分)借助遗传算法优化一个物流配送问题,考虑多目标优化,如成本、时间、服务质量等,提高配送的综合效益。3、(本题5分)运用Python的Keras库,构建一个基于强化学习的智能交通信号控制模型。优化交通流量,减少拥堵和等待时间。4、(本题5分)利用Scikit-learn中的集成学习算法,如随机森林或Adaboost,对医疗图像中的肿瘤进行检测和分类。分析不同算法和特征组合对检测结果的影响,评估模型在不同类型肿瘤上的性能。5、(本题5分)利用Python的OpenCV库,实现对视频中的车牌识别系统。包括车牌定位、字符分割和识别,提高识别准确率和速度。四、案例分析题(本大题共4个小题,共40分)1、(本题10分)分析一个利用人工智能进行民间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论