




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于集合的含义与表示课堂使用第1页,共16页,星期日,2025年,2月5日一、集合的含义集合“集合”是日常生活中的一个常用词,现代汉语解释为:许多的人或物聚在一起.思考:怎样理解数学中的“集合”?第2页,共16页,星期日,2025年,2月5日
考察下列问题:(1)1~20以内的所有质数;(2)绝对值小于3的整数;(3)高级中学高一、十一班的所有男同学;(4)平面上到定点O的距离等于定长的所有的点.思考1、数学中的集合含义如何描述?把研究对象称为元素,把一些元素组成的总体叫做集合,简称集。元素通常用小写拉丁字母a,b,c,…表示;集合通常用大写拉丁字母A,B,C,…表示.第3页,共16页,星期日,2025年,2月5日
任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由此说明什么?集合中的元素必须是确定的(确定性)
思考2:在一个给定的集合中能否有相同的元素?由此说明什么?集合中的元素是不重复出现的(互异性)
思考3:我们班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的(无序性)二、集合元素的三个特征第4页,共16页,星期日,2025年,2月5日三、元素与集合的关系
思考1:设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
思考2:对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?第5页,共16页,星期日,2025年,2月5日四、常用数集及记法自然数集(非负整数集):记作
N正整数集:记作或整数集:记作Z有理数集:记作Q实数集:记作R
思考:所有的自然数,正整数,整数,有理数,实数能否分别构成集合?
自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用下列符号表示:第6页,共16页,星期日,2025年,2月5日五、集合的表示方法问题提出:
用自然语言描述一个集合往往是不简明的,如“在平面直角坐标系中以原点为圆心,2为半径的圆周上的点”组成的集合,那么,我们可以用什么方式表示集合呢?第7页,共16页,星期日,2025年,2月5日思考1:这两个集合分别有哪些元素?
考察下列集合:(1)小于5的所有自然数组成的集合;(2)方程的所有实数根组成的集合.(1)0,1,2,3,4;(2)-1,0,1思考2:由上述两组数组成的集合可分别怎样表示?(1){0,1,2,3,4};(2){-1,0,1}思考3:这种表示集合的方法叫什么名称?
列举法思考4:列举法表示集合的基本模式是什么?
把集合的元素一一列举出来,并用花括号“{}”括起来,即第8页,共16页,星期日,2025年,2月5日
考察下列集合:(1)不等式的解组成的集合;(2)绝对值小于2的实数组成的集合.思考1:这两个集合能否用列举法表示?思考2:如何用数学式子描述上述两个集合的元素特征?
(1)R,且;(2)R,且思考3:上述两个集合可分别怎样表示?
(1){R|};(2){R|}思考4:这种表示集合的方法叫什么名称?
描述法
思考5:描述法表示集合的基本模式是什么?在花括号内先写上表示这个集合元素的一般符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。即{x|P(x)}第9页,共16页,星期日,2025年,2月5日数形结合思想是数学学科里一种重要的数学思想,集合中的数形结合主要体现在集合可以用Venn图表示。数学中,常用平面上封闭曲线的内部代表集合.A第10页,共16页,星期日,2025年,2月5日⑴有限集:含有有限个元素的集合.⑵无限集:含有无限个元素的集合.⑶空集:不含任何元素的集合.
记作.六、集合的分类第11页,共16页,星期日,2025年,2月5日思考1:与{}的含义是否相同?思考2:集合{1,2}与集合{(1,2)}相同吗?思考3:集合与集合相同吗?思考4:集合的几何意义如何?xyo第12页,共16页,星期日,2025年,2月5日理论迁移
例1用列举法表示下列集合:(1)小于3的所有自然数组成的集合;(3)由1~20以内的所有素数组成的集合;(2)方程的所有实数根组成的集合;第13页,共16页,星期日,2025年,2月5日例2试分别用列举法和描述法表示下列集合:(1)方程的所有根组成的集合;(2)由大于10小于20的所有整数组成的集合第14页,共16页,星期日,2025年,2月5日
随堂练习
用适当的方法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2)在平面直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年七月跨境医疗设备认证顾问合同知识产权条款
- 初中生四史教育
- 非高危行业生产经营单位主要负责人安全培训(复训)考试题(附答案)
- 《GBT 40347-2021植物保护机械 往复式容积泵和离心泵 试验方法》全新解读
- 2025届山西省太原市高三一模语文试卷(原卷版+解析版)
- 乡村卫生室年终总结
- 2025合同审核反馈表
- 企业货物买卖合同范本
- 无偿赠与农村土地合同
- 公对私借款合同范本
- 中集集团招聘题库
- 赣政通管理员操作手册
- 2024年ISTQB认证笔试历年真题荟萃含答案
- 2021年以工代赈项目实施工作指南(试行)
- 分布式光伏高处作业专项施工方案
- 成语小故事胸有成竹
- JC474-2008 砂浆、混凝土防水剂
- 一年级综合实践-集中注意力
- 《大学物理学》精美课件(全)
- 廉洁谈话一问一答简短六篇
- 校服采购投标方案(技术标)
评论
0/150
提交评论