湖南科技职业学院《神经网络与深度学习》2023-2024学年第二学期期末试卷_第1页
湖南科技职业学院《神经网络与深度学习》2023-2024学年第二学期期末试卷_第2页
湖南科技职业学院《神经网络与深度学习》2023-2024学年第二学期期末试卷_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页湖南科技职业学院《神经网络与深度学习》

2023-2024学年第二学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、人工智能中的联邦学习是一种新兴的技术,旨在保护数据隐私的前提下进行模型训练。假设多个机构想要联合训练一个人工智能模型,但又不希望共享各自的数据。那么,联邦学习是如何实现这一目标的?()A.将所有数据集中到一个中心服务器进行训练B.每个机构只上传模型参数,在云端进行聚合C.通过加密技术直接共享原始数据进行训练D.不需要数据交互,各自独立训练模型2、人工智能在自动驾驶领域的应用具有巨大的潜力,但也面临诸多挑战。假设一辆自动驾驶汽车正在道路上行驶,以下关于自动驾驶中的人工智能技术的描述,正确的是:()A.自动驾驶汽车完全依赖传感器数据和人工智能算法,不需要人类驾驶员的任何干预B.人工智能算法能够在所有复杂的交通场景中做出完美的决策,不会出现错误C.自动驾驶系统需要融合多种传感器数据,并通过深度学习算法进行实时的环境感知和决策制定D.自动驾驶中的人工智能技术已经非常成熟,不存在任何安全隐患3、人工智能中的异常检测在许多领域都有重要应用,如网络安全、金融欺诈检测等。假设我们要在金融交易数据中检测异常行为,以下关于异常检测的方法,哪一项是不准确的?()A.基于统计模型的方法B.基于聚类的方法C.基于规则的方法D.异常检测不需要考虑数据的分布特征4、在人工智能的发展中,算力的需求不断增长。假设要训练一个大型的人工智能模型,以下关于算力的描述,正确的是:()A.普通的个人电脑就能够满足训练大型人工智能模型的算力需求B.算力的提升主要依赖硬件的改进,软件优化的作用不大C.云计算平台可以提供强大的算力支持,帮助研究人员和企业训练复杂的人工智能模型D.算力的增长对人工智能模型的性能提升没有实质性的帮助5、人工智能中的可解释性是一个重要的研究方向。假设要解释一个深度学习模型的决策过程和输出结果,以下关于模型可解释性的描述,正确的是:()A.深度学习模型的内部运作非常复杂,无法进行任何形式的解释B.特征重要性分析可以帮助理解模型对输入特征的依赖程度C.可视化技术只能展示模型的结构,不能解释模型的决策逻辑D.模型可解释性对于实际应用没有太大意义,只要模型性能好就行6、人工智能在教育领域有潜在的应用,例如个性化学习系统。假设要为学生提供个性化的学习路径,以下哪种数据对于系统的设计最为关键?()A.学生的考试成绩B.学生的学习时间C.学生的学习风格和偏好D.学校的课程设置7、在人工智能的情感识别中,假设要从一段较长的语音中准确捕捉到细微的情感变化。以下哪种技术或方法可能有助于实现这一目标?()A.分析语音的韵律特征,如语调、语速B.只关注语音的内容,忽略语音的表现形式C.对语音进行分段处理,分别进行情感识别D.不进行任何预处理,直接分析原始语音8、人工智能中的知识表示和推理是实现智能系统的基础。假设要构建一个医疗诊断专家系统,能够根据患者的症状、检查结果等信息进行推理和诊断。以下哪种知识表示方法最适合用于表示复杂的医学知识和推理规则,并且便于系统的更新和维护?()A.产生式规则B.语义网络C.框架表示D.一阶谓词逻辑9、人工智能在智能客服领域的应用越来越广泛。假设要构建一个能够回答用户各种问题的智能客服系统,需要考虑以下几个方面。以下关于提高回答准确性的方法,哪一项是最重要的?()A.建立一个庞大的知识库,涵盖各种常见问题和答案B.运用自然语言生成技术,生成更加自然流畅的回答C.不断收集用户的反馈,对系统进行优化和改进D.使用多种语言模型进行融合,提高回答的多样性10、在人工智能的计算机视觉任务中,目标跟踪是一个具有挑战性的问题。假设我们要跟踪一个在人群中移动的人物,以下关于目标跟踪的方法,哪一项是不准确的?()A.基于特征匹配的方法B.基于深度学习的方法C.基于粒子滤波的方法D.目标跟踪不需要考虑光照和遮挡的影响11、在一个利用人工智能进行供应链优化的项目中,例如预测需求、优化库存管理和物流路径规划,以下哪种能力是人工智能系统需要具备的关键特性?()A.大规模数据处理能力B.动态适应能力C.全局优化能力D.以上都是12、人工智能中的优化算法对于模型的训练和性能提升起着关键作用。以下关于优化算法的叙述,不正确的是()A.常见的优化算法包括随机梯度下降(SGD)、Adagrad、Adadelta等B.不同的优化算法在收敛速度、稳定性和对超参数的敏感性方面有所不同C.优化算法的选择只取决于模型的架构,与数据特点无关D.可以通过调整优化算法的参数来提高模型的训练效果13、在人工智能的自动驾驶场景中,车辆需要与周围的其他车辆和基础设施进行有效的通信和协作。假设要实现车辆之间的安全、高效的信息交互,以下哪种通信技术和协议在可靠性和低延迟方面表现最为突出?()A.4G通信B.5G通信C.车联网专用短程通信(DSRC)D.Wi-Fi通信14、假设在一个智能农业的应用中,需要利用人工智能技术来监测农作物的生长状况并预测病虫害的发生,以下哪种数据源和分析方法可能是重要的组成部分?()A.卫星图像和图像分析B.传感器数据和时间序列分析C.气象数据和机器学习模型D.以上都是15、在人工智能的自然语言生成中,故事生成是一个富有创意的任务。假设我们要让计算机生成一个富有想象力的童话故事,以下关于故事生成的挑战,哪一项是不正确的?()A.创造新颖和有趣的情节B.保持故事的逻辑连贯性C.符合特定的文化和社会背景D.故事生成不需要考虑读者的喜好和期望二、简答题(本大题共4个小题,共20分)1、(本题5分)谈谈卷积神经网络的特点和优势。2、(本题5分)谈谈人工智能在智能财务管理投资决策中的应用。3、(本题5分)谈谈图像分割的技术和应用。4、(本题5分)谈谈人工智能在人才招聘中的应用。三、操作题(本大题共5个小题,共25分)1、(本题5分)使用TensorFlow实现一个图像超分辨率模型,将低分辨率的图像重建为高分辨率图像。对图像进行下采样处理作为输入,通过模型恢复出清晰的细节,评估重建图像的质量,如清晰度、边缘锐利度等。2、(本题5分)利用自然语言处理技术进行文本摘要提取,对长篇文档进行概括,方便用户快速了解主要内容。3、(本题5分)利用Python的TensorFlow框架,构建一个基于生成对抗网络(GAN)的图像修复模型,能够修复大面积损坏的图像。4、(本题5分)利用自然语言处理工具进行文本生成,给定一些关键词或主题,让模型生成一篇文章。5、(本题5分)利用Python中的PyTorch框架,构建一个长短时记忆网络(LSTM)模型,对文本情感进行分类。使用预训练的词向量模型,对文本数据进行处理,并在测试集上评估模型的性能。四、案例分析题(本大题共4个小题,共40分)1、(本题10分)研究一个基于人工智能的健

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论