《小数的意义》教案【4篇】_第1页
《小数的意义》教案【4篇】_第2页
《小数的意义》教案【4篇】_第3页
《小数的意义》教案【4篇】_第4页
《小数的意义》教案【4篇】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Word文档《小数的意义》教案【优秀4篇】小数的意义教案篇一

教学目标:

1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

3、培养学生的迁移、类推能力,以及良好的数学学习品质。

教学重点:

理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

教学难点:

理解一位、两位、三位小数的意义。

教学过程:

一、情境导入:

1、(展示一根绳子)猜猜它有多长?

生猜:1米……

师:要想知道准确的结果,怎么办?

生:量一量。

师:谁愿意来测量一下它的长度?

两名学生合作测量。

师:把你们测量的结果汇报一下。

生:一米。

师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

生猜并测量验证。

师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

生:不能。

师:为什么不能用整数了?

生汇报

师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

师:那你们说说在哪些地方还见过小数。

生汇报

师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

二、探索交流,建构新识:

(一)理解一位小数的意义。

1.师:请同学们任意说一个小数。

生汇报师板书

师:那老师也来写几个。

0.10.01

师:猜一猜老师接下来会写什么?

生:0.001

师:同学们真的是很会推理。

2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

生汇报

师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

3.生展示、汇报

展示若干组学生的画法。

(编号,让学生说出自己的想法。)

师:你认为哪位同学表示出了0.1那么大小。

生:1号;3号;2号;4号。

师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

师:那现在谁来说说0.1到底表示什么?

生汇报师小结:说简单点0.1就表示。(板书)

师:涂色部分为0.1那空白部分用哪个小数表示呢?

生汇报:0.9。

师:怎么看出0.9的?

生汇报

师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

生:1

师:现在我们明白了1里面有(10)个0.1。(板书)

4.再涂1块能看到哪两个小数?

生:0.2、0.8。

师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

生:分母都是10、都是十分之几……

师:那我们就可以说一位小数表示的就是十分之几。(板书)

(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

(二)理解两位小数的意义。

1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

同桌交流讨论。

生汇报:把它平均分成100份,取其中的一份。

预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

师:0.01就表示。还看到了哪个小数?

生:0.99。

师:0.99里面有几个0.01。

生:99个。

师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

2.如何表示0.25呢?

生汇报

师:还能想到哪个小数?他们的分数朋友分别是谁?

生:0.75,分数朋友:

3、(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

4、师提问:

(1)你涂了哪个小数?

生汇报。

师:猜一猜他涂了几格,还能找到另外一个小数吗?

(2)你涂了几格?谁能知道他写的是哪个小数?

5、师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

生汇报师小结板书:两位小数表示的。就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

(三)理解三位小数的意义。

1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

师:那它的分数朋友是多少?()

师:那0.237表示什么?它的分数朋友是谁?

生:

师:小数是多少?

生汇报

2、师:谁能找一个大一点的三位小数?

生:0.999=

师:要在正方形纸上涂上0.999会有什么感觉?

生汇报

如果再涂多少就涂满了?(0.001)

师:那也就是说(1000)个0.001是1。

师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

3、延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

……

师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

(四)提炼小数意义

1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

生汇报

小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

3、师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

三、巩固内化:

师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

出示课件练习题。

1、填一填。

2、填上合适的数。

四、回顾反思:

1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

2、自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

《小数的意义》教案篇二

教学目标

(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

(二)通过归纳整理,提高学生的概括能力。

教学重点和难点

熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

教学过程设计

(一)归纳整理小数乘除法的意义

1.口算下面各题,并说出各算式的意义。

15×31。5×315×0。315÷3

28×22。8×228×0。22。8÷2

25×52。5×52。5×0。52。5÷0。5

12×41。2×40。12×0。40。12÷0。4

2.思考:

①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

②小数除法的意义是什么?

讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

3.比较归纳、整理:

看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

讨论完成下表:

(二)复习小数乘除法的计算法则

1.小数乘法的计算法则。

(1)说出下面各题的积中各有几位小数。

23×0。521。4×0。727。5×12。031。84×0。026

提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

①0。4×2。5=(1);②0。075×0。52=(0。039)。

提问:

①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

(3)计算并验算:

67×75=836×25=125×24=

订正后回答:

0。67×7。5=8。36×0。25=0。125×2。4=

小结:

小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

讨论得出:

相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(4)口算:

0。8×4=4×0。8=0。05×20=20×0。05=

0。03×9=9×0。03=1。9×5=5×1。9=

观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

练习:在下题的○中填上>,<或=。

①1。6×1。2○1。6;②1。4×0○1。4;

③0。24×5○0。24;④3。7×2。1○3。7;

⑤0×7○0;⑥0×2。8○0。

上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

2.小数除法的计算法则。

(1)计算并验算(P34:6):

1。89÷0。54=7。1÷0。125=0。51÷0。22=

计算后订正,提问:

①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

(2)口算:

4。2÷0。6=1。5÷5=3。2÷0。8=2÷4=

哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

练习:在下面的○中填上>,<或=。

30÷0。6○301。8÷9○1。80÷0。2○0

3。6÷4○3。627÷0。3○270÷1。2○0

上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

(三)综合练习

1.口算:

39。78×1=3。6÷3。6=2。87×0=

1×0。56=7。8÷1=0÷2。87=

“1”与“0”有什么特性?

2.计算并求近似值:P35:2。

小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

3.作业:P35:1,3。

课堂教学设计说明

复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

板书设计

整数乘法:

4×25=100

75×52=3900

小数乘法:

小数除法:

小数的意义教案篇三

【教学内容】

人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

【教学目标】

1、使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

2、理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

3、培养学生探究发现、类推迁移的数学学习能力。

【教学重点】

在学生初步认识分数和小数的基础上,进一步理解小数的意义。

【教学难点】

理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

【教学准备】

米尺、多媒体课件、立方体教具。

【教学过程】

一、【课前铺垫、创设情景】

教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

二、【新课讲授】

1、认识一位小数

今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

(出示米尺课件)学生仔细观察,回答问题。

教学例1。

教师提问:一起来数数,把1米平均分成了多少份?

学生一起数,得出结论(10份)。

提问:因为1米=10分米,所以这一份是多长?

学生观察后回答:1分米

小结:我们把1米平均分成了10份,每一份是1分米。

提问:1分米是1米的几分之几?()

(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

由此得出:米=0.1米

(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

提问:谁能说说0.3米表示什么意思?

同样,可以得出:米=0.3米

(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

提问:谁能再来解释一下0.7米表示什么意思?

同理,可以写成:米=0.7米

(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

教师旨在引导,学生观察发现

师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

一起数数0.3米是由几个米组成的?(3个)

提问:那0.3里面有()个0.1?

这一段又是多长?(0.7米)

再来数数几个米组成0.7米?(7个)

提问:那0.7里面有()个0.1?

进一步强化训练:0.9里面有()个0.1?(9个)

请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

提问:1里面有()个?(10个)

也就是说:1里面有10个0.1

提问:谁能告诉我1.2里面有()个0.1?(12个)

师:你是怎么想的?

教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

师:这句话太重要了,谁能把它再说一遍!

点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

2、认识两位小数

小小的米尺,大大的学问。

师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

1厘米是1米的几分之几米呢?(米)

出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

请大家翻开课本32面,把你的答案写在书上。

教师根据学生的回答,课件逐一出示答案。

师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

师:那你发现了什么?

学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

师:谁能把这句非常重要的话像老师这样说一说!

点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

3、认识三位小数

师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

学生分组讨论交流,小组选派代表发言。

发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

学生总结发现:

分母是1000的分数,可以用三位小数来表示。

三位小数的计数单位是千分之一,写作:0.001

点击出示发现!你们个个都是自学小能手!老师为你们点赞!

4、概括:小数的意义

师:通过刚才的学习,我们知道了:

分母是10的分数,可以用一位小数来表示

分母是100的分数,可以用两位小数来表示

分母是1000的分数,可以用三位小数来表示

谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

这就是小数的意义,请大家齐读一遍。

学生齐读意义,教师板书课题~小数的意义

师:同学们可真棒!自己总结出了小数的意义!

5、总结:小数的计数单位

师:通过刚才的学习,我们也知道了:

一位小数的计数单位是十分之一,写作:0.1

两位小数的计数单位是百分之一,写作:0.01

三位小数的计数单位是千分之一,写作:0.001

师:谁能尝试着把它们用一句话来总结一下?

学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

6、小数相邻单位间的进率

(过渡)学习的过程就是不断地克服困难,战胜自我的过程。

师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

教师出示正方体变形课件,逐步引导学生观察分析:

1里面()个0.1

0.1里面()个0.01

0.01里面有()个0.001

提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

学生讨论发言。

小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

请大家齐读一遍。

三、【巩固提升、练习反馈】

1、完成教材第33页“做一做”。(可以一题两问)

2、判断:争当合格小裁判(说出判断理由)

四、【课堂小结】

提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

五、拓展延伸

板书设计

小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

小数的进率:每相邻两个计数单位之间的进率是10。

《小数的意义》教案篇四

教学目标:

1、经历小数的认识过程,初步了解小数的含义,会读,写一位小数,知道小数各部分的名称。知道自然数和整数。

2、进一步认识数的发展,感受数学与现实生活的联系,增强学习数学的兴趣。

教学资源:

投影

教学过程:

一。创设情境,唤起经验

谈话:星期天,小兰跟着妈妈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论