




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省晋中市平遥县平遥二中2024-2025学年高三下学期期末考试(数学试题理)试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A. B. C. D.2.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心3.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.4.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于6.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.7.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.9.如图是一个算法流程图,则输出的结果是()A. B. C. D.10.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题11.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.12.函数在的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前项和为,则数列的前项和_____.14.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.15.设命题:,,则:__________.16.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.18.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.19.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.20.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)21.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.22.(10分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由题可知,,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,,即,得,则.在中,由得.故选:B本题考查双曲线的离心率求法,几何性质的应用,属于中档题2.B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.3.C【解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.4.D【解析】
根据面面平行的判定及性质求解即可.【详解】解:a⊂α,b⊂β,a∥β,b∥α,由a∥b,不一定有α∥β,α与β可能相交;反之,由α∥β,可得a∥b或a与b异面,∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,则“a∥b“是“α∥β”的既不充分也不必要条件.故选:D.本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.5.D【解析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.考点:平面与平面的位置关系,平面的基本性质及其推论.6.B【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.7.D【解析】
通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.本题主要考查三角函数的平移变换,难度不大.8.B【解析】
根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.本题考查了三角函数定义,和差公式,意在考查学生的计算能力.9.A【解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.10.D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.11.A【解析】
根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.本题考查了常见几何体的三视图和体积计算,属于基础题.12.B【解析】
先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.本题考查函数图象的判断,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.14.1.【解析】
先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.15.,【解析】
存在符号改任意符号,结论变相反.【详解】命题是特称命题,则为全称命题,故将“”改为“”,将“”改为“”,故:,.故答案为:,.本题考查全(特)称命题.对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可.16.【解析】
试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为.考点:几何体的体积的计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.18.(1);(2).【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.试题解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19.(1)见解析;(2).【解析】
(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【详解】(1)证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,所以平面.又,所以平面.因为平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以为坐标原点,建立如图所示空间直角坐标系.则.于是,,.设面的一个法向量,由得令,则,即.设,易得,.设面的一个法向量,由得令,则,,即.依题意,即,令,则,即,即.所以.本题考查了空间向量和立体几何综合,考查了面面垂直的判断,二面角的向量求解,三棱锥的体积等知识点,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.20.(1),,;(2)详见解析.【解析】
(1)根据频率分布表计算出平均数,进而计算方差,从而X~N(65,142),计算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需要的总金额.【详解】解:(1)由已知频数表得:,,由,则,而,所以,则X服从正态分布,所以;(2)显然,,所以所有Y的取值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理诊疗操作技术规范
- 个人动画设计合同标准文本
- 云南融资租赁合同标准文本
- 农户菜籽出售合同标准文本
- 住建部装饰合同标准文本
- 1999正式合同标准文本
- 个人和家教合同标准文本
- 保时捷订单合同标准文本
- 企业国际劳务合同标准文本
- 乙方签居间合同标准文本
- 2024年中央戏剧学院招聘笔试真题
- 成都设计咨询集团有限公司2025年社会公开招聘(19人)笔试参考题库附带答案详解
- 药学知识联合用药
- 2025年江苏太仓市文化教育投资集团有限公司招聘笔试参考题库附带答案详解
- 广东省中山市2024-2025学年九年级上学期期末语文试题
- 装饰装修木工施工合同
- 铁代谢障碍性贫血的相关检验课件
- DBJ50T-187-2014 重庆市住宅用水一户一表设计、施工及验收技术规范
- 2025年全球及中国双金属氰化物(DMC)催化剂行业头部企业市场占有率及排名调研报告
- 2024年晋中职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 湖北省武汉市2024-2025学年度高三元月调考英语试题(含答案无听力音频有听力原文)
评论
0/150
提交评论