




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《圆标准方程》说课稿《圆标准方程》说课稿「篇一」【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应节圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难另外学生在探究问题的能力,合作交流的意识等方面有待加强。根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4.教学重点与难点(1)重点:圆的标准方程的求法及其应用。(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题。为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个解通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图。首先:纵向叙述教学过程(一)创设情境――启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决一方面帮助学生回顾了旧知――求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主决一实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲决一样获取的知识,不但易于保持,而且易于迁移。通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。(二)深入探究――获得新知问题二1.根据问题一的探究能不能得到圆心在原点,半径为几的圆的方程?2.如果圆心在,半径为xx时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程然后再让学生对圆心不在原点的情况进行探程然预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。(三)应用举例――巩固提高I.直接应用内化新知问题三1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点2.写出圆的圆心坐标和半径。我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。II.灵活应用提升能力问题四1.求以点为圆心,并且和直线相切的圆的方程。2.求过点,圆心在直线上且与轴相切的圆的方程。3.已知圆的方程为,求过圆上一点的切线方程你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个程第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空程第后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。(四)反馈训练――形成方法问题六1.求过原点和点,且圆心在直线上的圆的标准方程。2.求圆过点的切线方程。3.求圆过点的切线方程。接下来是第四环节――反馈训练这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信练这外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。(五)小结反思――拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r的圆的标准方程为;圆心在原点时,半径为r的圆的标准方程为:②已知圆的方程是,经过圆上一点的切线的方程是:2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。3.激发新疑问题七1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了在知识的拓展中再次掀起学生探究的热了在外它为下节课研究圆的一般方程作了重要的准备。以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题――问题心最样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成终从外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。《圆标准方程》说课稿「篇二」一、教材分析1、教材的地位与作用《圆的标准方程》是在学习《直线与方程》等知识的基础上对解析几何进一步深入认识,提高学生运用方程思想、等价转化思想、数形结合的思想研究解析几何的能力,为后来进一步学习圆锥曲线奠定基础。2、学习重点、难点学习重点:圆的标准方程的求法及其应用。学习难点:如何运用坐标法研究圆的问题。二、教学目标:1、知识目标:让学生理解圆的标准方程的推导,并能正确使用标准方程解决简单问题。2、能力目标:①进一步培养学生用坐标法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。3、情感目标:①培养学生勇于探究问题的能力,学会在错误中反思并获得学习自信;②增强学生学习的积极性,提高学习的乐趣。三、教法、学法分析1、学情分析学习基础:学生在初中时对圆有了初步的认识,学生通过必修二的第三章“直线的方程”的学习,对解析法有了初步认识,但是对于解析几何的解题方法,学生接触不多;学习障碍:对同一问题的不同分析方法形成思维的多样性较弱。2、教法学生为主体的探究性学习模式。四、教学过程(一)创设情境(引入课题)画一画:分别由两个学生在黑板上各画一个圆。问题1:初中几何中圆的定义是什么?确定圆的要素有几个?问题2:我们如何用坐标法来研究圆呢?(小组交流,学生代表到台前讲述)(二)深入探究(探究圆的方程,获得新知)方法一:坐标法:由两点间的距离公式。方法二:图形变换法;方法三:向量平移法(三)应用举例(巩固提高)I.直接应用(内化新知)例1.写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(设计意图:几何法角度分析点与圆的位置关系:讨论圆心离原点的距离d与半径r的大小;坐标法角度分析点与圆的位置关系:讨论将点的坐标代人方程的式子与II.灵活应用(提升能力)例2.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上,求圆心为C的圆的标准方程。设计意图:这是课本中的例3,书中用几何法直接求得圆心C的坐标和半径大小,从而得出圆的方程。我们还可以让学生用坐标法(待定系数法)求圆的方程,在寻求待定系数法的等式时又有多种思考途径:圆的几何意义(半径相等或对称性);向量的运用(数量积相等或垂直向量内积为零)。当学生的解法出现得较多时,引导学生归类:几何法与待定系数法。解法归类后提出要求:书中例2你还有几种解法,课后小组内进行交流。(四)反馈训练(形成方法)练习:课本P120第4小题:已知△AOB的顶点坐标分别是A(4,0),B(0,3),O(0,0),求△AOB外接圆的方程。练习的1,2,3小题课后独立完成,小组交流。设计意图:由初中所学的不共线的三点唯一确定圆升华到可以唯一求得圆的标准方程,进一步巩固旧知并明确要求得圆的标准方程需要三个条件。(五)小结反思(拓展引申)1.课堂小结:(1)圆心为C(a,b),半径为r的圆的标准方程为:当圆心在原点时,圆的标准方程为:(2)求圆的方程的方法:①待定系数法(坐标法);②几何法2.分层作业:(A)巩固型作业:课本P120练习1,2,3(独立完成后组内交流);课本习题4.1A组2,3.B组1,2.(独立完成后教师阅(B)思维拓展:1.用平面几何知识证明:三角形三边中垂线交于一点。2.已知圆的方程是,求经过圆上一点的切线的方程。(C)预习:课本4.1.2圆的一般方程。五、评价分析设计理念:1.数学课堂是学生学习数学知识、运用数学方法、体会数学思想的过程,教师的责任在于激发学生的主体意识,召唤学生的学习热情。2.高效的数学课堂实际上是学生高效学习的一个历程,教师要善于帮助学习寻求适合的、高效的学习方法。3.数学学习是一个思维碰撞的过程,教师设计出适合学生的情感体验节点,努力让学生心动而神动,营造出师生心灵共振的景象。设计思路:圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用坐标法研究圆的标准方程及其简单应用。首先,在已有圆的定义和求轨迹方程的一般步骤的基础上,引导学生探究获得圆的方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程确定的多样性激活学生思维、激发探究兴趣、领悟数学的灵动性。另外,为了培养学生的理性思维,我分别在探究圆的标准方程时和例1中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、把探究活动层层展开、步步深入,充分体现以以学生为主体的指导思想。学生学习知识的过程是学生操作、观察、发现、分析、解决问题的过程,在解决问题的同时锻炼思维提高能力、培养兴趣、增强信心。《圆标准方程》说课稿「篇三」(一)说教材1、教材结构编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。2、教学目标知识目标:(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径。(2)已知圆心和半径会写出圆的标准方程。能力目标:(1)培养学生数形结合能力。(2)培养学生应用数学知识解决实际问题的能力情感目标:(1)培养学生主动探究知识,合作交流的意识。(2)在体验数学美的过程中激发学生学习的兴趣。3、教学重点(1)圆的标准方程(2)已知圆的标准方程会写出圆的圆心和半径(3)已知圆心坐标和半径会写出圆的标准方程4、教学难点(1)圆的标准方程的推导(2)圆的标准方程的应用(二)说教法本节课采用讲练结合,启发式教学(三)说学法1、主动探究学习2、小组合作学习(四)说教学过程1、导入通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。2、知识衔接(1)圆的定义,圆上的点具备的特征性质(2)平面上两点间的距离公式通过复习为后边推导圆的标准方程奠定基础,降低难度。3、新课学习(1)推导圆的标准方程(化解难点)怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。(2)圆的标准方程(突出重点)先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。(4)小结本节的重点知识(5)根据所学为了加强巩固,适当的布置作业(五)说板书设计正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。《圆标准方程》说课稿「篇四」教材分析圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。教学目标1.知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。2.过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。3.情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。教学重点难点以及措施教学重点:圆的标准方程理解及运用教学难点:根据不同条件,利用待定系数求圆的标准方程。根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知DD操作体会DD感悟知识特征DD应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。学习者分析高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。教法设计问题情境引入法启发式教学法讲授法学法指导自主学习法讨论交流法练习巩固法教学准备ppt课件导学案教学环节教学内容教师活动学生活动设计意图情景引入回顾复习(2分钟)1.观赏生活中有关圆的图片2.回顾复习圆的定义,并观看圆的生成flash动画。提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?教师创设情景,引领学生感受圆。教师提出问题。引导学生思考,引出本节主旨。学生观赏圆的图片和动画,思考如何表示圆的方程。生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用自主学习(5分钟)1.介绍动点轨迹方程的求解步骤:(1)建系:在图形中建立适当的坐标系;(2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;(3)列式:用坐标表示条件P(M)的方程;(4)化简:对P(M)方程化简到最简形式;2.学生自主学习圆的方程推导,并完成相应学案内容。教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。培养学生自主学习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灯箱字制作AI应用行业深度调研及发展战略咨询报告
- 煤气化过程自动化巡检行业深度调研及发展战略咨询报告
- 秸秆热解油深度加工行业深度调研及发展战略咨询报告
- 水下机器人作业系统行业跨境出海战略研究报告
- 灯箱片AI应用行业跨境出海战略研究报告
- 环保溶剂油替代产品行业深度调研及发展战略咨询报告
- 科研成果转化服务行业跨境出海战略研究报告
- 关于部门下季度工作计划(32篇)
- 小学人音版音乐教学实施计划
- 2024年度四川省护师类之主管护师通关提分题库(考点梳理)
- 事故隐患内部报告奖励制度
- 《阿Q正传》(课件)2023-2024高二语文选择性必修下册
- 简约中国戏曲文化鉴赏工作汇报工作总结PPT模板
- 一文读懂泡泡玛特
- 一年级下册音乐教案第三单元 唱歌 咏鹅|人教版
- 2022年《江苏省机动车维修费用结算清单》格式
- Q∕GDW 11304.15-2021 电力设备带电检测仪器技术规范 第15部分:SF6气体泄漏红外成像检测仪
- GB∕T 41441.1-2022 规模化畜禽场良好生产环境 第1部分:场地要求
- 装配钳工技能大赛实操试卷试题
- 图文详解AP1000核电站
- 品质异常奖罚规定001
评论
0/150
提交评论