2025届高考数学大二轮复习层级二专题四立体几何第2讲空间中的平行与垂直教学案_第1页
2025届高考数学大二轮复习层级二专题四立体几何第2讲空间中的平行与垂直教学案_第2页
2025届高考数学大二轮复习层级二专题四立体几何第2讲空间中的平行与垂直教学案_第3页
2025届高考数学大二轮复习层级二专题四立体几何第2讲空间中的平行与垂直教学案_第4页
2025届高考数学大二轮复习层级二专题四立体几何第2讲空间中的平行与垂直教学案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1-第2讲空间中的平行与垂直[考情考向·高考导航](文)高考对本讲命题较为稳定,解答题的第(1)问考查空间平行关系和垂直关系的证明,而第(2)问多考查面积、体积的计算,难度中等偏上.解答题的基本模式是“一证明二计算”.(理)高考对本讲命题较为稳定,常以解答题第(1)问的形式考查,主要是线线、线面、面面平行和垂直的判定与性质,且多以棱柱、棱锥、棱台或简洁组合体为载体进行考查,难度中等.[真题体验]1.(2024·全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.解:(1)由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°,由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以,四棱锥E-BB1C1C的体积V=eq\f(1,3)×3×6×3=18.2.(2024·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.[主干整合]1.证明线线平行和线线垂直的常用方法(1)证明线线平行常用的方法:①利用平行公理,即证两直线同时和第三条直线平行;②利用平行四边形进行平行转换;③利用三角形的中位线定理证线线平行;④利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两直线垂直,只需证明始终线垂直于另始终线所在平面即可,即l⊥α,a⊂α⇒l⊥a.2.空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.热点一空间平行、垂直关系的证明逻辑推理素养逻辑推理——转化思想在平行、垂直证明中的应用以学习的线面平行、垂直关系为基础,将线面问题经过严密的逻辑推理转化为线线平行、垂直关系问题,从而实现了面面、线面、线线之间的相互转化.平行、垂直关系的证明问题[例1-1](2024·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.[审题指导](1)只需证明PE⊥AD即可.(2)依据PA⊥PD,只需再证明PD⊥AB即可,为此可先证AB⊥平面PAD.(3)只证明EF平行于平面PCD内的一条直线,取PC的中点G,连接FG,GD,证明四边形EFGD为平行四边形.[解析](1)证明:∵PA=PD,且E为AD中点,∴PE⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PE⊂平面PAD∴PE⊥平面ABCD∵BC⊂平面ABCD∴PE⊥BC.(2)∵四边形ABCD为矩形,∴CD⊥AD∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD∴CD⊥平面PAD∵PA⊂平面PAD∴CD⊥PA∵PA⊥PD,且CD,PD⊂平面PCD,CD∩PD=D,∴PA⊥平面PCD∵PA⊂平面PAB∴平面PAB⊥平面PCD.(3)取PC中点G,连接FG,GD∵F,G分别为PB和PC中点∴FG∥BC,FG=eq\f(1,2)BC∵四边形ABCD为矩形,∴BC∥AD,BC=AD∵E为AD中点∴ED=eq\f(1,2)AD∴ED∥BC,ED=eq\f(1,2)BC∴ED∥FG,ED=FG∴四边形EFGD为平行四边形∴EF∥GD∵EF⊄平面PCD且GD⊂平面PCD∴EF∥平面PCD线面平行及线面垂直的证明方法(1)要证线面平行,主要有两个途径:一是证已知直线与平面内的某直线平行;二是证过已知直线的平面与已知平面平行.转化思想在证明平行关系上起着重要的作用,在找寻平行关系上,利用中位线、平行四边形等是常用的手段.(2)要证线面垂直,关键是在这个平面内能找出两条相交直线和已知直线垂直,即线线垂直⇒线面垂直.结合图形还要留意一些隐含的垂直关系,如等腰三角形的三线合一、菱形的对角线以及经计算得出的垂直关系等.平行、垂直关系的探究问题[例1-2](2024·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.[审题指导]第(1)问利用线面垂直、面面垂直的判定定理求证:先证明BC⊥DM,再证DM⊥CM即可;第(2)问利用线面平行的判定定理进行判定;先连接AC,BD,BD与AC交于点O,再说明是否存在点P满意OP∥MC即可.[解析](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:如图,连接AC交BD于O,因为ABCD为矩形,所以O为AC的中点,连接OP,因为P为AM的中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.解决与平行、垂直有关的存在性问题的基本策略:假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的依据或事实,则说明假设成立,即存在;若导出与条件或实际状况相冲突的结论,则说明假设不成立,即不存在.(1)(2024·西安八校联考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:①EF∥平面ABC;②AD⊥AC.证明:①在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB,又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.②因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.(2)(2024·临沂三模)如图所示,五面体ABCDEF,四边形ACFD是等腰梯形,AD∥FC,∠DAC=eq\f(π,3),BC⊥面ACFD,CA=CB=CF=1,AD=2CF,点G为AC的中点.①在AD上是否存在一点H,使GH∥平面BCD?若存在,指出点H的位置并给出证明;若不存在,说明理由;②求三棱锥GECD的体积.解析:①存在点H,H为AD中点.证明如下:连接GH,在△ACD中,由三角形中位线定理可知GH∥CD.又GH⊄平面BCD,CD⊂平面BCD,∴GH∥平面BCD.②由题意知AD∥CF,AD⊂平面ADEB,CF⊄平面ADEB,∴CF∥平面ADEB.又CF⊂平面CFEB,平面CFEB∩平面ADEB=BE,∴CF∥BE,∴VGECD=VEGCD=VBGCD,∵四边形ACFD是等腰梯形,∠DAC=eq\f(π,3).∵CA=CB=CF=1,AD=2CF,∴∠ACD=eq\f(π,2),∴CD=eq\r(3),CG=eq\f(1,2),又BC⊥平面ACFD,∴VBGCD=eq\f(1,3)×eq\f(1,2)×CG×CD×BC=eq\f(1,3)×eq\f(1,2)×eq\f(1,2)×eq\r(3)×1=eq\f(\r(3),12).∴三棱锥GECD的体积为eq\f(\r(3),12).热点二平面图形的折叠问题[例2](2024·全国Ⅲ卷)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[审题指导](1)由平行线的传递性证明AD∥CG,结合平面图形中的条件证明AB⊥平面BCGE,再由面面垂直的判定定理可得证.(2)由AB∥DE,得DE⊥平面BCGE,取CG的中点M,结合菱形的特别性,简洁证明CG⊥平面DEM,即构造了平行四边形ACGD的高,再由已知代入公式计算.[解析](1)由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因为DM⊥CG.在Rt△DEM中,DE=1,EM=eq\r(3),故DM=2.所以四边形ACGD的面积为4.平面图形折叠问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的改变量和不变量,一般状况下,线段的长度是不变量,而位置关系往往会发生改变,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(2024·石家庄三模)如图(1)所示,在边长为24的正方形ADD1A1中,点B,C在边AD上,且AB=6,BC=8,作BB1∥AA1分别交AD1,A1D1于点P,B1,作CC1∥AA1分别交AD1,A1D1于点Q,C1,将该正方形沿BB1,CC1折叠,使得DD1与AA1重合,构成如图(2)所示的三棱柱ABC-A1B1C1.(1)求证:AB⊥平面BCC1B1;(2)求多面体A1B1C1-APQ的体积.解析:(1)证明:由题知,在题图(2)中,AB=6,BC=8,CA=10,∴AB2+BC2=CA2,∴AB⊥BC.又AB⊥BB1,BC∩BB1=B,∴AB⊥平面BCC1B1.(2)由题易知三棱柱ABC-A1B1C1的体积为eq\f(1,2)×6×8×24=576.∵在题图(1)中,△ABP和△ACQ都是等腰直角三角形,∴AB=BP=6,AC=CQ=14,∴VA-CQPB=eq\f(1,3)×S四边形CQPB×AB=eq\f(1,3)×eq\f(1,2)×(6+14)×8×6=160.∴多面体A1B1C1-APQ的体积V=VABC-A1B1C1-VA-CQPB=576-160=416.热点三异面直线所成的角、线面角[例3](2024·天津卷)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.[审题指导](1)连接BD,利用GH∥PD推线面平行.(2)连接DN,先证DN⊥平面PAC,再证PA⊥平面PCD.(3)由DN⊥平面PAC,可知∠DAN为所求,利用直角三角形求解.[解析](1)连接BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)取棱PC的中点N,连接DN.依题意,得DN⊥PC.又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC.又PA⊂平面PAC,所以DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=eq\r(3).又DN⊥AN,在Rt△AND中,sin∠DAN=eq\f(DN,AD)=eq\f(\r(3),3).所以,直线AD与平面PAC所成角的正弦值为eq\f(\r(3),3).求异面直线所成的角的关键在于通过平移使得两直线相交,可通过构造中位线或平行四边形实现.求线面角的关键是构造过直线上一点且与平面垂直的直线,可以干脆依据题中的垂直关系作出,也可以构造此垂线后证明.(1)(2024·南宁模拟)在如图所示的正方体ABCD-A1B1C1D1中,E,F分别是棱B1B,AD的中点,异面直线BF与D1E所成角的余弦值为()A.eq\f(\r(14),7) B.eq\f(5,7)C.eq\f(\r(10),5) D.eq\f(2\r(5),5)解析:D[如图,过点E作EM∥AB,交AA1于点M,过M点作MN∥AD,交DD1于点N,取MN的中点G,连接EG,NE,D1G,所以平面EMN∥平面ABCD,易知EG∥BF,所以异面直线BF与D1E所成的角为∠D1EG(或其补角),不妨设正方体的棱长为2,则GE=eq\r(5),D1G=eq\r(2),D1E=3,在△D1EG中,cos∠D1EG=eq\f(D1E2+GE2-D1G2,2D1E·GE)=eq\f(2\r(5),5),故选D.](2)(2024·全国Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6eq\r(2)C.8eq\r(2) D.8eq\r(3)解析:C[如图连接BC1,则∠AC1B=30°,在Rt△ABC1中,tan30°=eq\f(AB,BC1),∴BC1=eq\f(AB,tan30°)=eq\f(2,\f(\r(3),3))=2eq\r(3).∴CC1=eq\r(BC\o\al(2,1)-BC2)=eq\r(12-4)=2eq\r(2).∴长方体的体积V=2×2×2eq\r(2)=8eq\r(2).]

限时50分钟满分60分解答题(本大题共5小题,每小题12分,共60分)1.(2024·泉州模拟)如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且A1A⊥底面ABCD,点P,Q分别在棱DD1,BC上,BQ=4.(1)若DP=eq\f(2,3)DD1,证明:PQ∥平面ABB1A1.(2)若P是D1D的中点,证明:AB1⊥平面PBC.证明:(1)在AA1上取一点N,使得AN=eq\f(2,3)AA1,因为DP=eq\f(2,3)DD1,且A1D1=3,AD=6,所以PNeq\f(2,3)AD,又BQeq\f(2,3)AD,所以PNBQ.所以四边形BQPN为平行四边形,所以PQ∥BN.因为BN⊂平面ABB1A1,PQ⊄平面ABB1A1,所以PQ∥平面ABB1A1.(2)如图所示,取A1A的中点M,连接PM,BM,PC,因为A1A,D1D是梯形的两腰,P是D1D的中点,所以PM∥AD,于是由AD∥BC知,PM∥BC,所以P,M,B,C四点共面.由题设可知,BC⊥AB,BC⊥A1A,AB∩AA1=A,所以BC⊥平面ABB1A1,所以BC⊥AB1,因为tan∠ABM=eq\f(AM,AB)=eq\f(3,6)=eq\f(A1B1,A1A)=tan∠A1AB1,所以∠ABM=∠A1AB1,所以∠ABM+∠BAB1=∠A1AB1+∠BAB1=90°,所以AB1⊥BM,再BC∩BM=B,知AB1⊥平面PBC.2.(2024·烟台三模)如图(1),在正△ABC中,E,F分别是AB,AC边上的点,且BE=AF=2CF.点P为边BC上的点,将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面BEFC,连接A1B,A1P,EP,如图(2)所示.(1)求证:A1E⊥FP;(2)若BP=BE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE平行,若存在,请赐予证明;若不存在,请说明理由.(1)证明:在正△ABC中,取BE的中点D,连接DF,如图所示.因为BE=AF=2CF,所以AF=AD,AE=DE,而∠A=60°,所以△ADF为正三角形.又AE=DE,所以EF⊥AD.所以在题图(2)中,A1E⊥EF,又A1E⊂平面A1EF,平面A1EF⊥平面BEFC,且平面A1EF∩平面BEFC=EF,所以A1E⊥平面BEFC.因为FP⊂平面BEFC,所以A1E⊥FP.(2)解:在平面A1FP上存在过点K的直线与平面A1BE平行.理由如下:如题图(1),在正△ABC中,因为BP=BE,BE=AF,所以BP=AF,所以FP∥AB,所以FP∥BE.如图所示,取A1P的中点M,连接MK,因为点K为棱A1F的中点,所以MK∥FP.因为FP∥BE,所以MK∥BE.因为MK⊄平面A1BE,BE⊂平面A1BE,所以MK∥平面A1BE.故在平面A1FP上存在过点K的直线MK与平面A1BE平行.3.如图所示,已知BC是半径为1的半圆O的直径,A是半圆周上不同于B,C的点,F为弧AC的中点.梯形ACDE中,DE∥AC,且AC=2DE,平面ACDE⊥平面ABC.求证:(1)平面ABE⊥平面ACDE;(2)平面OFD∥平面ABE.解:(1)因为BC是半圆O的直径,A是半圆周上不同于B,C的点,所以∠BAC=90°,即AC⊥AB.因为平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,AB⊂平面ABC,所以AB⊥平面ACDE.因为AB⊂平面ABE,所以平面ABE⊥平面ACDE.(2)如图所示,设OF∩AC=M,连接DM.因为F为弧AC的中点,所以M为AC的中点.因为AC=2DE,DE∥AC,所以DE∥AM,DE=AM.所以四边形AMDE为平行四边形.所以DM∥AE.因为DM⊄平面ABE,AE⊂平面ABE,所以DM∥平面ABE.因为O为BC的中点,所以OM为△ABC的中位线.所以OM∥AB.因为OM⊄平面ABE,AB⊂平面ABE,所以OM∥平面ABE.因为OM⊂平面OFD,DM⊂平面OFD,OM∩DM=M,所以平面OFD∥平面ABE.4.(2024·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.解析:本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探究问题等学问,意在考查学生的转化实力和计算求解实力.(1)证明:因为PA⊥平面ABCD,所以PA⊥BD;因为底面ABCD是菱形,所以AC⊥BD;因为PA∩AC=A,PA,AC⊂平面PAC,所以BD⊥平面PAC.(2)证明:因为底面ABCD是菱形且∠ABC=60°,所以ΔACD为正三角形,所以AE⊥CD,因为AB∥CD,所以AE⊥AB;因为PA⊥平面ABCD,AE⊂平面ABCD,所以AE⊥PA;因为PA∩AB=A所以AE⊥平面PAB,AE⊂平面PAE,所以平面PAB⊥平面PAE.(3)存在点F为PB中点时,满意CF∥平面PAE;理由如下:分别取PB,PA的中点F,G,连接CF,FG,EG,在三角形PAB中,FG∥AB且FG=eq\f(1,2)AB;在菱形ABCD中,E为CD中点,所以CE∥AB且CE=eq\f(1,2)AB,所以CE∥FG且CE=FG,即四边形CEGF为平行四边形,所以CF∥EG;又CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.5.(2024·青岛三模)已知在三棱柱ABC-A1B1C1中,AB=2AC=2AA1=4,∠A1AC=eq\f(π,3),AC⊥BC,平面ACC1A1⊥平面ABC,M为B1C1的中点.(1)过点B1作一个平面α与平面ACM平行,确定平面α,并说明理由;(2)求三棱柱ABC-A1B1C1的表面积.解析:(1)如图,取AB的中点E,BC的中点F,连接B1E,B1F,EF,则平面B1EF∥平面ACM.因为平面ACC1A1⊥平面ABC,平面ACC1A1∩平面ABC=AC,AC⊥BC,所以BC⊥平面ACC1A1,BC⊥CC1,因为四边形BCC1B1为平行四边形,所以四边形BCC1B1为矩形,在矩形BCC1B1中,M,F分别是B1C1,BC的中点,所以B1F∥CM;在△ABC中,E,F分别是AB,BC的中点,所以EF∥AC.又EF∩FB1=F,AC∩CM=C,所以平面B1EF∥平面ACM.所以平面α即平面B1EF.(2)由题意知AC=2,AA1=2,AB=4.因为AC⊥BC,所以BC=eq\r(AB2-AC2)=eq\r(42-22)=2eq\r(3),所以△ABC的面积S1=eq\f(1,2)AC×BC=eq\f(1,2)×2×2eq\r(3)=2eq\r(3).在平行四边形ACC1A1中,∠A1AC=eq\f(π,3),其面积S2=AA1×ACsin∠A1AC=2×2sineq\f(π,3)=2eq\r(3).由(1)知四边形BCC1B1为矩形,故其面积S3=BC×CC1=2eq\r(3)×2=4eq\r(3).连接A1C,BA1,在△AA1C中,AC=AA1=2,∠A1AC=eq\f(π,3),所以A1C=2.由(1)知BC⊥平面ACC1A1,所以BC⊥CA1,所以A1B=eq\r(BC2+CA\o\al(2,1))=4.在△AA1B中,AB=A1B=4,AA1=2,所以△AA1B的面积S△AA1B=eq\f(1,2)×2×eq\r(42-1)=eq\r(15),所以平行四边形ABB1A1的面积S4=2S△AA1B=2×eq\r(15)=2eq\r(15).故三棱柱ABC-A1B1C1的表面积S=2S1+S2+S3+S4=2×2eq\r(3)+2eq\r(3)+4eq\r(3)+2eq\r(15)=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论