




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科生毕业设计(论文)题目:许疃煤矿3.0Mt/a新井设计深部软岩巷道底鼓治理技术分析摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为许疃煤矿3.0Mt/a新井设计。许疃矿位于安徽省宿州市西南部,地处蒙城县境内,区内交通十分便利。井田走向长10~13km,倾斜宽3~7km,井田面积20.67km2。井田内可采煤层共有3层,主采煤层为72、82煤。井田内72、82煤倾角在8~16°之间,72煤平均厚度5m,82煤平均厚度7m。矿井工业储量为342.39Mt,可采储量为260.38Mt,设计服务年限62a。矿井正常涌水量为550m3/h,最大涌水量为660m3/h。矿井相对瓦斯涌出量为12m3/t,绝对瓦斯涌出量为75.8m3/min,属高瓦斯矿井。煤层无自然发火倾向,但煤尘有爆炸危险性。根据井田地质条件,提出四个技术上可行的开拓方案。方案一:立井单水平开拓,另设一-900m辅助水平;方案二:立井单水平开拓;方案三:立井两水平开拓,直接延深,另设一-850m辅助水平;方案四:立井两水平开拓,暗斜井延深,另设一-850m辅助水平。通过粗略和详细技术经济比较,最终确定方案二为最优方案。水平标高-650m。整个井田划分为6个带区和2个采区。考虑到井田南北走向较长,矿井生产前期采用中央并列式通风方式,后期根据需要在井田南翼增加一个边界回风井。矿井首采采用带区式准备方式,工作面设计长度250m,采用综采一次采全高采煤工艺。矿井年工作日为330d,昼夜净提升时间为16h。矿井采用“三八”制工作制度,两班生产,一班检修。生产班每班完成3个采煤循环,检修班完成1个采煤循环。循环进尺为0.8m,日产量为9278.99t。矿井煤炭采用胶带输送机运输,辅助运输采用蓄电池式电机车牵引固定箱式矿车。主井采用两对16t长形箕斗提煤,副井采用一对1.5t矿车双层四车加宽罐笼运送物料和升降人员。专题部分题目为:深部软岩巷道底鼓治理技术分析。主要分析了煤矿开采过程中深部软岩巷道底鼓产生的原因,并对底鼓变形进行了数值力学分析,建立了数值力学模型,提出了相应的控制技术措施。翻译部分主要内容是关于厚硬关键层断裂所引起的冲击矿压的动态影响,英文题目为:Thedynamicimpactofrockburstinducedbythefractureofthethickandhardkeystratum。关键词:立井;单水平;带区;综采大采高;中央并列式通风ABSTRACTThisdesignincludesthreeparts:thegeneraldesign,themonographicstudyandthetranslation.Thegeneraldesignisabouta3.0Mt/anewundergroundminedesignofXutuanCoalMine.XutuanCoalMineislocatedinMengchengCounty,whichliesinthesouthwestofSuzhouCity,Anhuiprovince.Thetransportationintheminingareaisveryconvenient.It’s10~13kmonthestrikeand3~7kmonthedip,withthe20.67km2totalarea.Thereare3minablecoalseams.Themainaquifercoalseamsare72coalseamand82coalseam.Theaveragethicknessof72coalseamis5mandtheaveragethicknessof82coalseamis7m.Thedipofthecoalseamsis8~16°.Theprovedreservesofthiscoalmineare342.39Mtandtheminablereservesare260.38Mt,withaminelifeof62a.Thenormalmineinflowis550m3/handthemaximummineinflowis660m3/h.Therelativegasemissionrateofthemineis12m3/t,andtheabsolutegasemissionrateis75.8m3/min.Thus,itisahighgasmine.Thecoalseamhasnospontaneouscombustiontendency,butthecoaldusthasexplosionhazard.Basedonthegeologicalconditionsofthemine,Ibringforwardfouravailableprojectsintechnology.Thefirstisverticalshaftdevelopmentwithsinglemininglevel,andanauxiliarylevelissetat-900m;thesecondisverticalshaftdevelopmentwithsinglemininglevel;thethirdisverticalshaftdevelopmentwithtwomininglevels,thedeepextensionofblindslope,andanauxiliarylevelissetat-850m.Andthelastisverticalshaftdevelopmentwithtwomininglevels,thedeepextensionofblindslope,andanauxiliarylevelissetat-850m.Thesecondprojectisthebestcomparingwithotherthreeprojectsintechnologyandeconomy.Themininglevelis-650m.Theminefieldisdividedintosixstripdistrictsandtwominingdistricts.Takingintoaccountthelongdistanceinthesouthandnorthdirection,thetypeofmineventilationisthecentralizedjuxtaposeventilationatthebeginningperiod.Atthelaterperiod,itaddsanairshaftontheboundaryofthesouth.Designedfirstminingdistrictmakesuseofthemethodoftheminingdistrictpreparation.Thedesignlengthoftheworkingfaceis250m,whichusesfully-mechanizedcoalminingtechnologyandfullycavingmethodtodealwithgoaf.Theworkingdaysinoneyearare330.Everydayittakes16hoursinliftingthecoal.Theoperationmodeinthemineis“three-eight”withtwoteamsminingandtheotheroverhauling.Everyminingteammakesthreeworkingcycle,andtheoverhaulingteammakesoneworkingcycle.Sothereare7workingcycleseveryday.Theadvanceofaworkingcycleis0.8m,andthedailyoutputis9278.99ton.Mainroadwaymakesuseofbeltconveyortotransportcoalresource,andminecartobeassistanttransport.Themainshaftusestwodouble12tskipstoliftcoalandtheauxiliaryshaftusesatwinswide1.5tfour-cardouble-deckcagetoliftmaterialandpersonneltransportation.Themonographicstudyentitled“Analysisontreatmenttechnologyofthefloorheaveinthedeepsoftrockroadway”.Thestudymainlyanalysethereasonandthemechanismoffloorheave,andsetupasoftrockroadwayfloorheavemechanicalmodel.Andthecorrespondingcontrolmeasuresandcontrolmechanismonfloorheaveareraisedinthisstudy.Thetranslatedacademicpaperisaboutthedynamicimpactofrockburstinducedbythefractureofthethickandhardkeystratum.Thetitleis“Thedynamicimpactofrockburstinducedbythefractureofthethickandhardkeystratum”.Keywords:shaft;singlemininglevel;stripdistrict;full-heightcoalcaving;centralizedjuxtaposeventilation目录一般部分1矿区概述及井田地质特征 页英文原文ThedynamicimpactofrockburstinducedbythefractureofthethickandhardkeystratumFENGXiaojun,WANGEnyuan,SHENRongxiStateKeyLaboratoryofCoalResourcesandSafeMining,ChinaUniversityofMiningandTechnology,Xuzhou221008,ChinaAbstract:Torevealthedynamicimpactofrockburstinginducedbythethickandhardroofofgravelaskeystratumfractured,basedonthekeystrataandrockcontroltheories,combinedwiththemechanicalload-baseddynamicloadingwiththeLawofConservationofEnergyinasystem,thispaperanalysedthestaticstabilityandtheprocessingofenergyconversionwithinthesystemwhenthekeystratumwasfracturing.Andthekeystratumdynamicmodeloffracturingwasestablished.Theresultsindicatethatlargeamountsofstrainenergywouldbeforcedintotherockduringtheprocessasthekeystratumfracturesandbecomesunstable.Thegreaterthedynamicloadfactoris,themoreelasticenergyisforcedintothelowerrockstrataofthekeystratum,andthemoreobviousthedynamicimpactofthelowerrockstratawouldbe.Thesizeofthedynamicloadfactorrelatestotheaspectratioofkeyrockmasses,thethicknessoftheoverburden,theminingheight,theheightofthefragmentizedrockatthebottomofkeystratumandthecompactioncoefficientofthefragmentizedrockunderthestaticduringloadingconditions.Accordingtothecalculationofactualwork,theresultsareconsistentwiththefieldtestsapproximately.Theresultscanprovidereferencestosimilarconditions.Keywords:keystratum;rockburst;dynamicloading;energyconstant1.IntroductionThekeystratumcontrolstheoverlyingrockstrata,eventothesurface,withhighstrength,highthickness,andoverallsubsidenceofoverlyingstratahappeneasilywhenitfractures[1-3].Thekeystratumthathasdifferentlithology,strengthandthicknessimpactsthecontroloftherockstrataandthedynamicimpactofrockburstafteritfractures[4-7].Asthekeystratum,thethickandhardroofwithgraveliscontrollingthemovementsoftheentireoverburden,becauseofitscharacteristicsofhighstrength,highthickness,fracturewouldnothappenuntiltheareaofminingspacereachesavaluethatisbigenough[8].Thewholeoverburdenevensurfacesinksthesurfaceinstantaneouslywhenitfractures,causingareleaseofstrongdynamicforceontherockstratabelowthekeystratum.Withtheincreasinginthestrengthanddepthofminingexploitation,thedynamicimpactofrockburstwillbemoreandmoreimportantwhenthekeystratumfracturessuddenly,andthesupportdesignsandthehazardsofrockburstinducedbydynamiceffectscontinuetoincrease[9-10].Theprevioushavedevelopedcomprehensiveandsystematicstudiesonrockcontrol,miningdamageandthemechanismofwaterinrushattheoverburdenseparationarea[11-14].Reference[15]discussedtheimpactontheheightofwaterinrushcausedbythelocationofkeystratum,andexplainedthemechanismofwaterinrushinsomecoalminesaccidents.Reference[16]discussedthestressofthecompoundkeystratumwiththeElasticThinPlateTheoryandLaminatedPlateTheoryofthemechanicsofcompositematerials,andobtainedthelimitloadwhenthekeystratumwasunstablebyusingplasticlimitanalysismethods,regardingthecombinedmotionofrockstrataoverburdenasthecombinedmotionofthekeystratabasedonthehardrockstrata.Reference[17]discussedthemechanicalmechanismthatitcouldeasilycauseminingearthquakeandrockburstoccurrencewhenthekeystratumbrokeoffinpositive"O-X"type,andbymonitoringtherockburstinducedbythefractureofthekeystratuminstantlyinthree-dimensionsusingthemicroseismmonitoringsystem.Asthekeystratumfractureisadynamicloadingprocesstothelowerrockstrata,causingtheloadingprocessofrockfracturingisdifferentfromthegeneralstaticloadingconditions,itisnecessarytoconductresearchesontherockburstinducedbythefractureofthekeystratum.Thispaperestablishedthedynamicmodelofthekeystratumfracturedandderivedthedynamicloadfactorwhenthedynamicimpactloadingonthelowerstratabycombiningthetheoryofthemechanicalload-baseddynamicloadingwiththelawofconservationofenergyofsystem,weanalysedthestaticstabilityandtheprocessofenergyconversionwithinthesystemwhenthekeystratumwasfracturing.Confirmatorycalculationofactualworkwasalsodone,whichwasconsistentwiththefieldtestsapproximately.Theresultscanprovidereferencestosimilarconditions.2.SubsidenceprofilecurveofthesuperminingexplorationThesuperminingexplorationisthecriticalminingstatethatthewidthofgoafislargerthan1.2to1.4timesthedepth.Comparedwiththefullexploration,themaximumsubsidenceinthecentralofthesuperminingexplorationshows:thedistributionofthemaximumsubsidencepresentsregionalcharacteristic.Thefractureintervaliscloselyrelatedtorockmassstrengthandthicknessaccordingtothetheoryofthemodelofmainroofinitialfracture.Thegreatertheintensityandthicknessare,thegreaterthefractureintervalis,sotheminingconditionsaredeterminedbytherockpropertyandthicknessofthekeystratum.Asthethickandhardlayerofgravelofthekeystratumpossesseshighstrength,highintegrity,anditisnoteasytofracture,thefractureintervalisfargreaterthanthegeneralstrengthofthekeystratum,onwhichconditions,themovementsofrockbelowthekeystratumcanberegardedasthesuperminingexploration.Accordingtothesuperminingexplorationtheory,thedeformationofthesurfacesubsidencevariesfromzerotomaximumwithtime,whichissimilartothefullminingexploration.Tofacilitatethedescriptionofthesubsidenceprofilecurveoftheminingexploration,thesubsidenceprofilecurveofthesuperminingexplorationisdividedintothreeparts—“fullexploration—equaldeformation—fullexploration”,whichisshowninfigure1.ThesuperminingexplorationcurveequationwasdescribedbythesinkbasinprofilefunctionderivedbySovietUnion's[18]. (1)WhereVzisthevalueofseparationareaheightbelowthekeystratum,Vzmisthemaximumvalueofseparationareaheightbelowthekeystratum,xisthehorizontaldistancefromthecentreoftheseparationareatotheexpectedpointofsurfacesubsidence,Listhedistancefromthecentreoftheseparationareatotheboundaryofthesinkarea.Fig.1Thekeystratumminingmodelofthethickandhardlayer3.ThedynamicimpactmodelofkeystratumThedynamicloadingeffectsarecausedtothelowerrockstratawhenthekeystratumfractures.Theinstantaneousstresslevelismuchhigherthanthestaticinthestablestate,anditforceslargestrainenergyintotherockstrataintheformofelasticwaveinashortperiodoftime,beingsuperimposedwiththeoriginalenergy.Whenthekeystratumfractures,themoreelasticenergyisforcedintothelowerlayerofthekeystratum,thegreaterthescopethegreatertheenergy,andthemoreobviousthedynamiceffectstothelowerstrata.Soitcanbeseenthatthegreaterthedynamicloadfactor,thehigherthestresslevel,thegreatertheinputtedenergy,themorepronetoinstabilityforrock.Basedonthestateofthesuperminingexplorationintheplanemodel,combinedwithmechanicalmechanismandequilibriumconditionsofthemainroof"bond-beam"structure,itisconfirmedthatwhenthelowerstrataareshockedbythefractureofthekeystratum,lotsofenergyisforcedintothelowerstrataattheearlierstagethroughthetwosalientpointswheretheyarecontactwith.Withthevariationofcoefficients,thecontactextentincreasesconstantly,andextendstosurfacegradually.Giventhatthestressdisturbanceandtheenergyreleaseonthefracturingmomentmakethegreatesteffectsonthesurroundingrockmasses,wefocusedonstudyingthestateonthefracturingmoment.Basedontheaboveanalysis,thekeystratummechanicalmodelontheplaneofthethickandhardlayerwasestablished.Seefigure2.Fig.2ThethickandhardlayerofthekeystratummodelfordynamicimpactAccordingtotheactualengineeringconditions,combinedwiththetheoryofthekeystratumfracture,assumingthekeystratumofthickandhardlayeraslikerigidbody,i.e.theeffectsonthedynamicimpactprocessfromthedeformationoffracturecanbebypassed.Consideringthevariationofthecushioncoefficient,thedynamicimpactedrocksubjecttoHooke'sLawandtheelasticmodulusisnotchanged.Thekeystratumfracturesinstantlywhentheminingintervalreachesthelimitvalue.Theenergyreleasesbyfracturingiscomposedofthreeparts:withinthesurveyregion,externalloadexertsonthekeystratumthroughtheupperboundaryofit,whichwillproduceacertaindisplacementundertheactionofforce.i.e.theenergygeneratedbyexternalload;thenthekeystratumwillproduceadisplacementdownwardwhenitfractures,thechangeofgravitationalpotentialenergy;finally,thekineticenergyofthekeystratumbeforethekeystratumfractures.Theenergyequationwasestablishedbythetheoryofconservationofenergy. (2)WhereWistheenergygeneratedbyexternalload,Tisthekineticenergybeforethekeystratumfractures,Visthegravitationalpotentialenergy,Vεdistheenergyincreaseintherockstratabelowthekeystratum.3.1SolvethedynamicloadfactorThestressanddisplacementonthemomentofthekeystratumfracturingisfargreaterthanthatinthestateofstationary.Itisdifficulttomeasurethestressanddisplacementdirectlyundertheactualengineeringconditionsorbyusingtheoreticalarithmetic,whileitiseasyunderthestaticconditions.Thedynamicloadfactorisdefinedasratioofdynamicloadstress,displacementandthestaticstress,displacement.Thesimultaneousequationsthatareusedtoresolvethedynamicloadfactorareestablishedbycombiningthestaticmechanicalanalysiswiththeenergyconstantlaws.Theconcretestepsareasfollows.3.1.1SolvethestaticmechanicalequationThemodelshowninfigure2isanalysedwiththestaticmechanicaltheory,settingupthefollowingequationsbasedonthematerialmechanicalanalysis. (3) (4)Thestaticstressissolvedbasedontheaboveequations,theresultisasfollow: (5)Whereaandbarethelengthandheightoftheblockmassofthekeystratum,?isthemaximumanglewhenthekeystratumfractured,?isthedepressionangleoftheblockmassofthekeystratum,i.e.thearctana/bshowninfigure2,Gisthegravityofthetwoblockmasses,Fyistheverticalstressoftheboundaryofthekeyblockmassesbelowthekeystratum,Fstisthestaticonthestaticequilibriumconditions,△stisthedisplacementonthestaticequilibriumconditions.3.1.2EnergySolutionUndertheactionofthestatic,withtheeffectsofthecushioncoefficient,thelowerstrataoccurtosomesubsidence;andintheprocessofrockbursting,notonlydoesthestaticimpactthesubsidence,butalsothedisplacementsubsidenceisalsoimpactedbydynamicloading.Takingintoaccounttherangeofthelowerimpactedstrataislarge,andthestrataarefragmentizedonthewholeandfullycracks,itisconsideredthatitismainlythemutualembeddingoftherockfracturesintheprocessofimpact,andtherealkineticenergyoftheimpactedstrataaresmallwhichisseenaszerointhefollowingequations.Theformulasfollow: (6) (7) (8)WhereFdisthedynamicloadingofrockinducedbythekeystratumfractured,△disthedynamicdisplacementofrockinducedbythekeystratumfractured,histheminingheight,haisthethicknessofroofcollapseabovethecoalseam,Kisthedynamicloadfactor,ξisthecompactionfactorunderstaticload,usuallybetween0.05-0.15.Thecharacteristicsofthefracturingprocessandmovementsareassayed.Besidetheenergyfromtheupperloading,thereonlyexiststhetransformationofthegravitationalenergyinthemodel.TheWandVarefiguredoutbasedonthetheoryofqualitydifferential. (9) (10)Where△yisverticaldisplacementofthekeyblockmass.3.1.3SolvethedynamicloadfactorThesimultaneousequationsaresolvedbyusingthestaticstressinformula5andtheenergygeneratedbyexternalloadinformula9andthepotentialenergychangesinformula10. (11)Resultofthedynamicloadfactor(12)Thedynamicloadfactorisresolvedaccordingtotheaboveformulas.Addingtherelationshipbetweenthedynamicloadstress,displacementandthestaticstress,displacement,thedynamicloadstressanddisplacementoftheimpactfromthekeystratumtothelowerlayercouldbeworkedout.Combiningwiththesafetyfactor,thepossiblemaximumstressanddisplacementafterthekeystratumfracturescanbedeveloped,whichmayprovidereferencesforsupportdesigningandsafetymininginthenextphase.3.1.4AnalysisofresultsTheanalysisofdynamicloadfactorformulashowsthatthesizeofthefactorisrelatewithseveralparametersincludingtheaspectratioofthekeyblockmasses,thethicknessoftheoverburden,theminingheight,thethicknessofthebottomofthekeystratumandthecompactioncoefficientonstaticloadingconditions.Becausethecontributionfromeachparameterisdifferent,thesensitivityofdifferentparametersfromthedynamicloadfactorisdifferentaswell.Inordertostudythesensitivityofdifferentparameters,theformulasareanalysedbyusingtheprincipleofsingle-factorchanging.Onthegivenactualconditions,thispaperfocusedonthesensitiveanalysisofthestaticloadcompactionfactorandtheverticaloverburdenpressuresothatitcouldbeappliedasmuchaspossibletothesimilarminingareas.Theresultsareshownasfollows:Fig.3ThedynamicloadfactorchangeswithdifferentcushioncoefficientsFig.4ThedynamicloadfactorchangeswithdifferentburialdepthFigure3showsthatthedynamicloadfactorincreasedwiththedecreaseofcushioncoefficientsundertheactualmininggeologyconditions,whichsuggeststhatthelowerstratacollapseareequivalenttotheformationofaloosebufferspace,makingtheeffectofrockburstisrelativelylittlewhenthekeystratumfractures.Ontheotherhand,itexplainsthatitfavourthemanagementprincipleoftheminingpressurewhentheroofsuddenlyfracturesbyincreasingthefragmentationofthemainroof.Figure4showsthatthedynamicloadfactorincreaseswiththeburialdepthdecreasing.Themainreasonsare:asthedepthincreased,theincrementalvalueofstaticstressitselfisataveryhighmagnitude.Althoughthedynamicloadfactortrendsdownwardaround-0.2withthedepthincreasing,itdoesnotmeanthatthedynamiceffectdecreased.Althoughthedynamicloadfactorisrelativelysmaller,thestaticloadbyeachpartofthedynamicloadfactorincreasedgreatly.Theincreaseofstaticstressmakesamajorcontributiontothedynamicimpactofrockburstatthistime.Thatistosayalthoughtherelativedynamicloaddecreases,theabsolutestaticincreasesgreatly,sothemanagementandmonitoringshouldbestrengthenedtopreventrockbursthazards.4.CheckingtheactualprojectAcoalminelocatedinnorth-easternChina.Intheprocessofdeepmining,theminegroundpressuretendedtointense,androckburstoccurredmanytimes.Themaincoalseamsare3#and9#atpresent.Thehardnessof3#coalisgreater(Platscoefficientf=3).Theaveragecoalthicknessis3.38meters,andtheaveragedepthis-400metersorso.Theaveragecoalseamangleis30°-33°.Theimmediateroofisfinesandstoneof3to15meters,whichhasa9meterssandstonethickness.Thethicknessofthemainroofisaround60metersgravel,whichisdeterminedasthekeystratumbycalculatingandanalysing.Theminingpressurereportsshowthatthemainroof?sfirstweightingintervalisaround100metersundertheconditions,soparameter―a‖canbedeterminedtobe50meters.Afterthefieldtestontheforceofthesupportwhenthemainrooffracturedfirstly,itwasfoundthatthedynamicpressurecoefficientwasabout2.2.Thefollowingparametersaredeterminedaftercalculation.Theresultsareshownintable1.Table.1Theactualprojectresultsbyusingtheformula12ParametersabβξK2KTheactualdynamicpressurecoefficientValue50606°0.16.722.592.1-2.4Theresultsshowedthatthetheoreticalresultofthedynamicloadfactorbasedontheformulaislargerthanthemeasuredone.Analysisshowsthefollowingreasons:ontheonehand,thecalculationiscompletedwithintheelasticdeformation,buttherockplasticdeformationwouldalsohappenduetothepresenceofhighstressundertheactualsituations,eventhoughthegravelroofsarehard,thickandstrongenough,thejointsarestillexistinthem.Therelativemotionofjointsandthefrictionwouldconsumeenergyconstantly,whichleadtolargercalculationresult;ontheotherhand,theenergyisinputtedtobothsidesofthekeystratumintheformofelasticwaveandtheenergytransferseffectively,whichisbothignoredintheprocessofenergycalculation,whichcausestheenergyvalueislargerthantheactualresult,leadingtotheKvaluelarger,butsomeguidanceandpracticestillcouldbegiventoengineeringreferences.5.Conclusions1)Undertheexplorationconditionsthatthethickandhardroofofgravelisregardedasthekeystratum,theseparationareamatchesthesubsidenceprofilecurveofthesuperminingexploration,havingtheequaldeformationatthecentralregion.Themodelwhichcontactsthelowerstratawithtwosalientpointswhenthethickandhardlayerofthekeystratumfracturedisestablished.Lotsofenergyisforcedintothelowerstrataattheearlierstagethroughwhichtheycontactedfirstly.2)Alargeamountofstrainenergywouldbeforcedintotherockduringtheprocessoffractureanddestabilizationofthekeystratum.Thegreaterthedynamicloadfactorwas,themoreelasticenergythatisforcedintothelowerstrata,andthemoreobviousthedynamicimpactonthelowerrockstratawouldbe,themoreeasilyitleadtorockbursthazards.3)Thesizeofthedynamicloadfactorrelatestotheaspectratioofkeyrockmasses,thethicknessoftheoverburden,theminingheight,thethicknessoftherockbrokendownatthebottomofkeystratumandthecompactioncoefficientonstaticduringloadingconditions.Thedynamicloadfactorincreaseswiththecushioncoefficientsdecreasing.Thelowerstratacollapseareequivalenttotheformationofaloosebufferspace,makingtheeffectsofrockshockarerelativelylittlewhenthekeystratumfractured;thedynamicloadfactorincreaseswiththeburialdepthdecreasing.Incrementofthestaticstressbecomesamajorcontributiontothedynamicimpactonrockburstatthistime.Accordingtothecalculationofactualwork,theresultsareconsistentwiththefieldtests.6.References[1]QianMG,MiaoXX,XUJL,MaoXB.Keystratatheoryingroundcontrol.Xuzhou:ChinaUniversityofMiningandTechnologyPress,2003:17-18.(InChinese)[2]QianMG,MiaoXX,XuJL.Studyofkeystratumtheoryforcontrol.JournalofChinaCoalsociety,1996,21(3):225-229(InChinese).[3]XuJL,ZhuWB,WangXZ,YiMS.Classificationofkeystratastructureofoverlyingstratainshallowcoalseam.JournalofChinaCoalSociety,2009,34(7):865-869(InChinese).[4]WeiMY,WangEY,LiuXF,SongDZ,ZhangY.NumericalSimulationofRoofFractureUnderDynamicDisturbance.JournalofMining&SafetyEngineering,2010,27(4):532-536(InChinese).[5]JiaJQ,WangHT,TangJX,LiXH,LiKX,HuGZ.Determinationofkeystrataandintervalofroofingbreakingofhardandsoftcompositeroofs.ChineseJournalofRockMechanicsandEngineering,2006,25(5):974-978(InChinese).[6]PhillipsonSE.Texture,mineralogy,androckstrengthinhorizontalstress-relatedcoalminerooffalls.InternationalJournalofCoalGeology,2008,75(3):175–184(InEnglish).[7]ShenB,KingA,GuoH.Displacementstressandseismicityinroadwayroofsduringmining-inducedfailure.InternationalJournalofRockMechanics&MiningSciences,2008,45(5):672–688(InEnglish).[8]WangL,GuoGL,ZHANGXN,LIUYX.Evaluationonstabilityofoldgoaffoundationbylongwallcavingbasedonthekeystratumtheory.JournalofMining&SafetyEngineering,2010,27(3):57-61(InChinese).[9]TianJS,GaoS.Deformationandfailurestudyofsurroundingrocksofdynamicpressureroadwaysindeepmines.MiningScienceandTechnology,2010,20(6):850-854(InEnglish).[10]XuXF,DouLM,LuCP,ZhangYL.Frequencyspectrumanalysisonmicro-seismicsignalofrockburstsinducedbydynamicdisturbance.MiningScienceandTechnology,2010,20(5):682-685(InEnglish).[11]LiSG,ZhangTJ.Catastrophicmechanismofcoalandgasoutburstsandtheirpreventionandcontrol.MiningScienceandTechnology,2010,20(2):209-214(InEnglish).[12]SongDZ,WangEY,WangC,XuFL.Electromagneticradiationearlywarningcriterionofrockburstbasedonstatisticaltheory.MiningScienceandTechnology,2010,20(5):686-690(InEnglish).[13]TangJH,BaiHB,YaoBH,WuY.Theoreticalanalysisonwater-inrushmechanismofconcealedcollapsepillarsinfloor.MiningScienceandTechnology,2004,23(4):1301-1306(InEnglish).[14]ZuoYJ,LiSC,QinSF,LiLP.Acatastrophemodelforfloorwater-resistingkeystratuminstabilityinducedbydynamicdisturbance.RockandSoilMechanics,2010,31(8):2361-2366(InChinese).[15]ZhuWB,WangXZ,KongX,LiuWT.Studyofmechanismofstopewaterinrushcausedbywateraccumulationinoverburdenseparationareas.ChineseJournalofRockMechanicsandEngineering,2009,8(2):36-311(InChinese).[16]LiuKY,QiaoCS,ZhouH,TengWY.Researchoncombinedmotioncharacteristicsofoverlyingrockstratumandpositionofkeystratum.ChineseJournalofRockMechanicsandEngineering,2004,23(4):1301-1306(InChinese).[17]HeH,DouLM,GONGSY,ZHOUP,XUEZJ.Rockburstrulesinducedbycrackingofoverlyingkeystratum.ChineseJournalofGeotechnicalEngineering,2010,32(8):1260-1265(InChinese).[18]KratzschH.TheMiningdamagesand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石油开采业的资源储量与利用现状考核试卷
- 竹材在复合材料领域的应用考核试卷
- 电子电路的智能城市基础设施建设考核试卷
- 童车制造企业市场拓展与渠道建设考核试卷
- 电视机制造业的可持续发展目标与实现路径考核试卷
- 那一段什么的时光初三语文作文
- 理想初二语文作文
- 工艺美术创新与实践考核试卷
- 移动通信技术在智慧金融的应用考核试卷
- 纸张与纸板生产中的质量检测与控制考核试卷
- 《环氧树脂综述》课件
- 如何进行医疗垃圾的安全运输
- 公共停车场建设项目可行性研究报告
- 急危重症患者家属护理课件
- 2024年中考数学几何模型归纳(全国通用):18 全等与相似模型之十字模型(学生版)
- 海南师范大学《高等数学》2020-2021期末试卷B
- 温度元件检修规程
- 非暴力沟通(完整版)
- 全国小学数学优质课一等奖《鸡兔同笼》教学设计
- 点凸焊操作工艺规程
- mpa政治学全套课件
评论
0/150
提交评论