




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人工智能前沿专题第0页-大语言模型基础导论TheFrontierTopicsinArtificialIntelligence-FoundationsofLargeLanguageModels&GenerativePretrainedTransformerHonggangZHANG張宏綱CityUniversityofMacauJanuary-June,2025,Macau112A.AllYouInformation2017),Vaswani,N.Shazeer,etal.,“AttentionIsNeed,”31stA.AllYouInformation2017),ProcessingSystems(NIPSCA,USA,2017.---------------------------------------》4A.Vaswani,N.Shazeer,etal.,“AttentionIsAllYouNeed,”31stConferenceonNeuralInformationProcessingSystems(NIPS2017),CA,USA,2017.66“ScalingLawsforNeuralLanguageModels”9 ③RLHF-ReinforcementTransformerBlock/LayerQRepresentativeLLMsandtheirKeyParametersSurvey4040414242Application-basedtaxonomyof43ComprehensiveSurveyonTransformer444647484922website.ThankstothDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3TechniqueReport/deepseek-ai/DeepSeek-R1/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf/deepseek-ai/DeepSeek-AugmentedGeneration(33nnAgentsnn4nIEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS,VOL.34,NO.8,AUGUST2023nIEEETRANSACTIONSONAssociationfor5narXiv:2306.00802v1[stat.ML]1Jun2023narXiv:2306.00802v1[stat.ML]1Jun2023website.Thankstotheauthors.website.Thankstotheauthors.6AlgorithmsandData-DrivennarXiv:2304.08818v1[cs.CV]18Apr20237GPT(NetGPT)andotherNetwork-basedGenerativePretrainedTransformer&LLMsCloudLLMsNetGPTLarge-scaleLanguage/ImageDataLarge-scaleKnowledgeGraphFullyOffloadingLLMsfromDividingLLMsbetweenEstablishingLLMsSynergyCloudtoEdgeCloudandEdgewithCloudandEdgeCollaboration-ModelingArchitectureandMechanismsYuxuanChen,RongpengLi,Z.Zhao,ChegnhuiPeng,JianjunWu,EkramHossainandHonggangZhang,“NetGPT:AnAI-NativeNetworkArchitectureforProvisioningBeyondPersonalizedGenerativeServices”,IEEENetwork,March2024.Low-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnextLow-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnexttothemodelweight,withsmallinternalrankr,andreducethenumberoftrainableparametersfordownstreamtasksRegardingLLaMA-7B,therequiredVRAMdecreasefrom112GBto28GB,forportabledevicesrrdinweightdinParametersTransformerLevel/HeadGPT-2-base768GPT-2-Medium345M24/16GPT-2-Large774M36/24GPT-2-XL48/32ParametersTransformerLevel/HeadLLaMA-7B6.7B32/324096LLaMA-13B40/405120LLaMA-33B32.5B60/526656LLaMA-65B65.2B80/648192models,"arXivpreprintarXiv:2106.09685(2021).-ModelingArchitectureandMechanisms(cont.)LLaMA-7B-WorkingMechanismsandFlowPathsCloudLLMs-RepresentativeExamplesandPerformanceCloudLLMsCloudLLMs-EnablingIntent-DrivenNetworksandServicesNetGPTbyCloud,Edge&UserCoweleverageasample-efficiendeterminethesuitableYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.NetGPTbyCloud,Edge&UserCoOverviewoftheLLMsplittingarchitectureinwirelesschannel,withlayer3designatedastheexamplesplittingpoint.Weusethe32-layerLLaMA2-7Bmodelasanexample.Underdifferentsplittingpointsoftransformerblocks,verifyhowchannelnoisewouldaffecttheLLMinferenceperformanceYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.196YuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.197ComparisonoftrainingperformancesfordifferentRLapproachesunderCaseL,CaseH,andCaseACaseL:Lowpacketlossprobability0∼0.1andaninitialsplittingpointneartheinput(layers1-5)CaseH:Highpacketlossprobability0.1∼0.3andaninitialsplittingpointfarfromtheinput(layers6-10)CaseA:Completerangeofpacketlossprobability0∼0.3andinitialsplittingpoints(layers1-10)ElectronicEngineerThe“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof6GnetworkAI-relatedtechnologies,stand200201 The“TenIssuesofNetGPT”Announced 202The“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof•Issue7:SecurityandPrivacyofNetGPT•Issue8:DataGovernanceofNetGPT•Issue9:EvaluationandMetricsofNetGPTwithServiceLevelAgreement203The“TenIssuesofNetGPT”Announcedby6GANA204WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6G205WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm206206WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm207207WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm208208WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm209209Belgrade,Serbia,25-210Serbia,25-27211TheVisionandFrameworkforNetwork-NativeAIand212arXiv:2103.02823,March2021.212Network-NativeAIandNetG≤—≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保安证考试的心理调适技巧试题及答案
- 2025年保安证考点梳理试题及答案
- 江苏电子信息职业学院《现代工程管理基础》2023-2024学年第一学期期末试卷
- 2025届山东省文登市高三第一次诊断性考试数学试题理试题含解析
- 湖北省武汉市万松园路小学2025届小升初素养数学检测卷含解析
- 考前冲刺:2025年保安证考试试题及答案
- 浙江省桐乡市2025年高中毕业生二月调研测试生物试题含解析
- 朔州陶瓷职业技术学院《Hadoop大数据技术》2023-2024学年第二学期期末试卷
- 针对性保安证试题及答案
- 2025年保安证全方位备考试题及答案
- 陕西省咸阳市实验中学2023-2024学年八年级下学期阶段性检测(一)语文试题
- 抖音本地生活培训课件
- 肺结核诊治指南
- 2024年城市轨道交通行车值班员(三级)考试题库汇总(附答案)
- 任务11-千牛工作台
- 老药新用与用药创新趋势
- 《锐器伤应急处理》课件
- 护理给药制度课件
- 2024城市数字公共基础设施统一识别代码分类框架和编码规范
- 2024届陕西省西安市西北工业大学高考语文一模试卷含解析
- 枸橼酸钠血滤置换液-药品临床应用解读
评论
0/150
提交评论