凉水井煤矿6.0Mt-a新井设计-岩巷快速施工技术现状与支护趋势_第1页
凉水井煤矿6.0Mt-a新井设计-岩巷快速施工技术现状与支护趋势_第2页
凉水井煤矿6.0Mt-a新井设计-岩巷快速施工技术现状与支护趋势_第3页
凉水井煤矿6.0Mt-a新井设计-岩巷快速施工技术现状与支护趋势_第4页
凉水井煤矿6.0Mt-a新井设计-岩巷快速施工技术现状与支护趋势_第5页
已阅读5页,还剩148页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科生毕业设计(论文)题目:凉水井煤矿6.0Mt/a新井设计岩巷快速施工技术现状与支护趋势大学毕业论文任务书毕业论文题目:凉水井煤矿6.0Mt/a新井设计毕业论文专题题目:岩巷快速施工技术现状与支护趋势毕业论文主要内容和要求:根据采矿工程专业毕业设计大纲,本毕业设计分为一般部分、专题部分和翻译部分,具体包括:1、一般部分:凉水井煤矿6.0Mt/a新井设计,主要内容包括:矿井概况、矿井工作制度及设计生产能力、井田开拓、首采盘区设计、采煤方法、矿井通风系统、矿井运输提升等。2、专题部分:岩巷快速施工技术现状与支护趋势3、翻译部分:完成近3~5年国外期刊上与采矿或煤矿安全有关的科技论文翻译一篇,要求不少于3000字符。大学毕业论文答辩及综合成绩答辩情况提出问题回答问题答辩委员会评语及建议成绩:答辩委员会主任签字:年月日学院领导小组综合评定成绩:学院领导小组负责人:年月日

摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为凉水井煤矿6.0Mt/a新井设计,共包括10章:1.矿区概述及井田地质特征;2.井田境界和储量;3.矿井工作制度及设计生产能力;4.井田开拓;5.准备方式-盘区巷道布置;6.采煤方法;7.井下运输;8.矿井提升;9.矿井通风与安全技术;10.矿井基本技术经济指标。凉水井矿井位于陕西省榆林市神木县境内,井田走向长约7.9km,倾向长约11.0km,面积约69.4km2。主采煤层为4-2、5-2煤层,平均倾角0~3°,平均厚度2.98m。井田工业储量为747.5Mt,可采储量590.72Mt,矿井服务年限为75a。矿井正常涌水量为100~150m3/h,最大涌水量为450m3/h;矿井相对瓦斯涌出量为1.01m3/t,属瓦斯矿井。根据井田地质条件,设计采用双斜井两水平开拓方式,井田采用盘区式布置方式,共划分为四个盘区,辅运大巷、胶运大巷和回风大巷皆为煤层大巷,布置在4-2煤层中。考虑到本矿井为低瓦斯矿井,经过方案比较矿井通风方式采用中央并列式通风,由于工作面推进长度较大,需风量较多在井田开采后期通风较困难,因此在后期在井田两翼设置两个回风斜井,满足井田后期开采需风量。针对42101工作面进行了采煤工艺设计。该工作面煤层平均厚度为3.2m,平均倾角1°,顶板岩性以粉砂岩、细粒砂岩为主,局部为中粒砂岩和泥岩。工作面采用长壁一次采全高综合机械化采煤法。采用双滚筒采煤机割煤,往返一次割两刀。采用“三八制”工作制度,截深1.0m,每天8个循环,循环进尺16m,月推进度440m。大巷采用可伸缩式胶带输送机运煤,辅助运输采用无轨胶轮车。专题部分题目为《岩巷快速施工技术现状与支护趋势》,介绍了矿井岩巷快速施工的现状与支护的趋势,经过查阅大量资料和结合国内外现场应用分析,认为发展快速掘进技术对煤矿经济持续增长有着非常大的意义。翻译部分为《\o"GotoMiningScienceandTechnology(China)onSciVerseScienceDirect"MiningScienceandTechnology》中的一篇题目为《Discriminationconditionsandprocessofwater-resistantkeystrata》的论文。关键词:凉水井矿;双斜井;盘区布置;一次采全高综合机械化采煤;中央并列式;岩巷快速施工与支护;隔水关键层ABSTRACTThisdesignincludesofthreeparts:thegeneralpart,specialsubjectpartandtranslatedpart.Thegeneralpartisanewdesignof6.0Mt/aforLiangShuijingmine,itincludestenchapters:1.Anoutlineoftheminefieldgeology;2.Boundaryandthereservesofmine;3.Theservicelifeandworkingsystemofmine;4.developmentengineeringofcoalfield;5.Thelayoutofpanelen;6.Themethodusedincoalmining;7.Transportationoftheunderground;8.Theliftingofthemine;9.Theventilationandthesafetyoperationofthemine;10.Thebasiceconomicandtechnicalnorms.LiangShuijingmineislocatedinYuLin,Shanxiprovince.It’sabout7.9kmonthestrikeand11.0kmonthedip,withthe69.4km2totalhorizontalarea.Theminablecoalseamis4-2、5-2withanaveragethicknessof2.98mandanaveragedipof0-3°.Theprovedreservesofthiscoalmineare747.5Mtandtheminablereservesare2590.72Mt,withaminelifeof75a.Thenormalmineinflowis100-150m3/handthemaximummineinflowis450m3/h.Theminegasemissionrateis1.01m3/twhichcanberecognizedaslowgasmine.Basedonthegeologicalconditionofthemine,thisdesignusesaduel-verticalslopedouble-leveldevelopmentmethod,andfullstrippreparation,whichdividedintofourbands,beltconveyorroadwayandreturnairwayareallcoalroadways,arrangedinthefloorrockof4-2coalseam.Takingintoaccountofthelowgasemission,mineventilationmethodusethecentralparatactictypeventilation,Becauseworkingfaceimpellinglargelength,needtoairvolumeinminingfieldlatemoredifficultventilation,thereforeinthelaterinthefieldsettworeturnairshaftswings,meetlatertorunminingairvolume.Thedesignconductedcoalminingtechnologydesignagainstthe42101face.Thecoalseamaveragethicknessofthisworkingfaceis3.2mandtheaveragedipis1°,theimmediateroofismudstoneandthemainroofissandstone.Theworkingfaceappliesfullymechanizedlongwallfull-heightcoalcavingmethod,andusesdoubledrumshearercuttingcoalwhichcutstwiceeachworkingcycle."Three-Eight"workingsystemhasbeenusedinthisdesignandthedepth-webis1.0mwitheightworkingcyclesperday,andtheadvanceofaworkingcycleis16mandtheadvanceis440mpermonth.Specialsectionentitled《RapidConstructionofRocksituationandsupporttrends》;aftertheaccesstolargeamountsofdataandanalysisoffieldapplicationathomeandabroad,thedevelopmentofrapidexcavationtechniquesthatsustainedeconomicgrowthincoalmineshasaverylargesignificance.Translationpartfor"theMiningScienceandTechnology"inthetitlefortheDiscriminationconditionsandprocessofwater-resistantkeystrataofthewaterofthekeystratumdiscriminantrecognitionconditionsandsteps.Keywords:LiangsShuiJingcoalmine;DoubleverticalDoubleslope;Plateareadecorate;Inonetimesthecomprehensivemechanizedmininghigh;Thecentralparatactictype;Rockfastconstructionandsupporting;Waterproofkeylaye一般部分专题部分第页参考文献[l]王金华.我国煤巷机械化掘进机现状及锚杆支护技术.煤炭科学技术,2004,32(l)[2]李跃宇,吴志海.我国煤矿掘进装备技术发展的思路.煤炭科学技术,2000,28(9):46~47[3]ROBINHILL.适用于所有开采的机器-连续式采煤机.WORLDCOAL.1998(8)[4l朱昊.振动截割式掘进机的研制.煤矿机电,1999(2)[5]涂兴子,康全玉,翟新献等.厚煤层分层综采技术.北京:煤炭工业出版社,2002[6]张宝明,陈炎光,涂永沂.中国煤矿高产高效技术.徐州:中国矿业大学出版社,2001[7]《综采技术手册》编委会.综采技术手册.北京:煤炭工业出版社,2001[8]曹催晨,孟晋忠.TBM在国内外的发展及其在万家寨引黄工程中的应用.水利水电技术,2001,32(4)[9]丁录仕.炮掘巷道快速掘进技术.煤矿开采,2004,9(4):50~51[10]沈季良等编.建井工程手册.北京:煤炭工业出版社,1985[11]路耀华,崔增祁主编.中国建井技术.徐州:中国矿业大学出版社,1995[l2]闫日武,王高.大断面岩巷快速掘进技术.建井技术,2002,23(l)[13]张卫斌.煤巷快速掘进技术初探.采矿技术,2003,3(4)[14]尚立斌.隧道掘进技术在斜井井筒施工中的应用.山西科技,2004(5):76~78[15]牛宝玉.采掘锚与掘锚一体化快速掘进成巷技术.煤炭工程,2003(l1)9~12[16]崔增祁,李树青.岩巷施工技术的回顾与展望.建井技术,N.o5~6,1996[17]刘其兴著.现代凿井技术研究.西安矿业学院.陕新出批字第95157号,1995[18]董方庭、姚玉煌、黄初主编.井巷设计与施工.徐州:中国矿业学院出版社,1986[19]赛云秀编著.现代矿山井巷施工技术.陕西:陕西科学技术出版社,2000[20]DongFangting,etc.DesignandConsrtuctionofMineShaftandDritf,ChinaUniversityofMiningandTechologyPress,1991[21]Per-AndersPersson、RogerHolmberg、JaiminLee.RoekBlastingandExplosivesEngineeringCRCPress,1994[22]FrankHarris,GroundEngineeringEquipmentandMethods,McGRAW-HILLBookCompanyLimitedNEWYORK,1983[23]姜彦忠编.爆破技术基础.北京:中国铁道出版社,1992[24]王树仁.我国煤矿岩巷爆破技术的回顾与展望.建井技术,1996[25]戴光林,林东才编著.光爆锚喷施工技术.北京:煤炭工业出版社,1992[26]胡坤伦,杨仁树等.淮南煤矿深部岩巷掘进用爆破器材优化.中国矿业,2005,14(3)[27]周昌达等编.井巷工程.北京:冶金工业出版社,1993[28]孙执书.采掘机械与液压传动.徐州:中国矿业大学出版社,1991[29]白杰平.液压传动与采掘机械.北京:煤炭工业出版社,1995[30]程居山主编.矿山机械.徐州:中国矿业大学出版社,1997[31]张卫斌.煤巷快速掘进技术初探.采矿技术2003,3(4)[32]陈光寒,庞景波.浅谈提高矿井综合单进的几个途径.鸡西大学学报,2005,5(4):25~27[33]王建军,林在康.掘进保证系数-一种衡量采掘平衡的新指标.辽宁工程技术大学学报(自然科学版),1992,18(6):593一595[34]中国矿业学院等编.井巷工程.北京:煤炭工业出版社,1980[35]董方庭.巷道围岩松动圈支护理论,1997[36]A.WahabKhair.HowtocopewithcutterroofProblem.11thInternationalConferenceonGroundControlinMining.TheUniversityofOollongong,NSW,July1992[37]HeManchao,WangHongmei.MiningTrendofChineseCoalResourcesinthe2lstCenturyandthePredicting,SystemforEnvironmentalDamageduetoMining.ProceedingsoftheJapan-ChinaJointForumonEnvironmentalGeomechanics.KyushUniversityPress,1994:29~34[38]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999英文原文:Discriminationconditionsandprocessofwater-resistantkeystrataWANGLianguo*,MIAOXiexing,WUYu,SUNJian,YANGHongboStateKeyLaboratoryofGeomechanics&DeepUndergroundEngineering,ChinaUniversityofMining&Technology,Xuzhou221008,ChinaAbstract:Water-preservationminingisoneofthemostimportantpartsofthe‘GreenMining’technologysystem,whichcanrealizetheeffectiveregulationofgroundwaterresourcesbycontrollingstratamovement,changingpassivepreventionandgovernanceofwaterdisasterstoactiveconservationandutilizationofgroundwaterresourcesandthusobtainingcoalandwatersimultaneouslyinmining.Theconceptofwater-resistantkeystratafurtherenrichesthecontentofthekeystratumtheoryandprovidesatheoreticalbasisforwater-preservationmining.Inordertorealizetheideaofwater-resistantkeystrataasaguidelineinthedesignofwater-preservationminingandengineeringapplications,theconditionsfordiscriminationintheprocessofwater-resistantkeystrata,wehavepresentedamechanicalmodel,aswellasitscorrespondingcomputerprogram,basedonalargenumberoftheoreticalanalysesandfieldmeasurements,aswellasonacomprehensiveconsiderationoftheposition,structuralstabilityandseepagestabilityofkeystrata.Practicalengineeringapplicationsindicatethatthisdiscriminationmethodanditscorrespondingcomputerprogramonwater-resistantkeystrataareaccurateandreliableandcansatisfytheactualdesignneedsofwater-preservationminingandthushaveinstructionalimportanceforwater-preservationmininginminingareaslackingwater.Keywords:water-resistantkeystratum;water-preservationmining;structuralstability;seepagestability1IntroductionThekeystratumtheoryofstratacontrolproposedbyQianetal.hasbeenwidelyappliedintheidentificationofsuitablestratigraphichorizonsofbedseparationgrouting,inthedesignofdrillingholearrangementsofgroundgasdrainage,inthecontrolofoverlyingstrataandsurfacesubsidenceandelsewhere[1].The‘keystrata’inthiskeystratumtheoryofstratacontrolarereferredtoasstructuralkeystrata,bearingthemaineffectofrockmassmovementsduringmining,whichcontrolsthestructuralshapeofrupturedrockmasses.Givengroundpressurecontrolproblemsinwater-preservationmining,Miaoetal.have,inthelastfewyears,presentedtheconceptofwater-resistantkeystrata[2-5].Awater-resistantkeystratuminwater-preservationminingisdifficulttodefinebutcanbedescribedasfollows:providedthattheupperaquiferofacoalseamisabovethestructuralkeystratum,ortheloweraquiferofacoalseamisbelowthestructuralkeystratumandifthestructuralkeystratumcannotbreakundermining,thenthestructuralkeystratumhasawater-resistantfunctionandiscalledthewater-resistantkeystratum.Ifthestructuralkeystratumcanbreakundermining,butthebrokenfissurescanbefilledwithweakrockstrataandaseepagewater-inrushchannelcannotbeformed,thenacompoundwater-resistantkeystratumisformedbycombiningthestructuralkeystratumwithaweakrockstratum.Fromthisdescription,onecanseethatthewater-resistantkeystratumcanconsistofonlyonesinglerockstratum,orbycompoundingseverallayersofweakrockstratawithhardrockstrata.Therockstrataofthewater-resistantkeystratummustincludehardrockstratawhichcanbearthestrainofrockmassmovementduringmining.Thatistosay,awater-resistantkeystratummustbeformedbystructuralkeystratumorbycompoundingweakrockstratawithhardrockstratathatcanbearacertainamountofstrainofrockmassmovementduringmining.Theconceptofawater-resistantkeystratumfurtherenrichesthecontentofthekeystratumtheoryandprovidesatheoreticalbasisforwater-preservationmining.However,distinguishingwater-resistantkeystratalargelydependsonfieldexperienceandisstillshortofascientificbasis.Inordertorealizetheideaofwater-resistantkeystrataasaguidelineinthedesignofwater-preservationminingandengineeringapplications,inthisstudy,wepresenttheconditionsfordiscriminationandprocessofwater-resistantkeystrataandtheircorrespondingcomputerprogramsbasedonalargenumberoftheoreticalanalysesandfieldmeasurements.Inthismethodofdiscrimination,theposition,structuralstabilityandseepagestabilityofkeystrataareconsideredcomprehensively.Wealsoprovideforacorrespondingforceanalysismodel.Ourpracticalapplicationssuggestthatthediscriminationmethodanditscorrespondingcomputerprogramsofwater-resistantkeystrataareaccurateandreliable,whichshouldsatisfytheactualdesignneedsofwater-preservationminingandarethusofinstructionalimportanceforwater-preservationmininginminingareaslackingwater.2ConditionsfordiscriminationAccordingtoourdescriptionofawater-resistantkeystratum,weseethatthedecisionofwhetherthereisawater-resistantkeystratumintheoverlyingstratashouldbeconsideredfromtwosides.First,weneedtodecidewhetherthereisarockstratumthatcancontrolthemovementoftheoverlyingstrataabovethecoalseam(roof)orbelowthecoalseam(floor).Rockstratacanconsisteitherofasinglerockstratumcalledthestructuralkeystratumorisacompoundstratumwhichcancontrolthemovementoftheoverlyingstratainaparticularcombinationofseverallayersofweakandhardrockstrata.Theserockstratahavethecapacityofwater-resistancewhentheirstructureremainstableanddonotbreak.Secondly,theriskofwater-inrushcanbejudgedbytheabruptchangesinthecharacteristicsofbrokenrockseepageastherockstratabreakwhenmining.Ifnowater-inrushfromthebrokenrockstrataoccurs,wecanconcludethattheserockstrataarewater-resistantkeystrata.Therefore,thediscriminationofwater-resistantkeystratacanbeclassifiedintothreesteps:2.1DiscriminationbasedonpositionThebasisfortheformationofwater-resistantkeystrataisthattherearestructuralkeystrataintheoverlyingstrata.Wemustfirstidentifythepositionofstructuralkeystrataandthenidentifywhetherthesestructuralkeystratacanformwater-resistantkeystrata[1].Thepositionofastructuralkeystratumcanbeidentifiedbycombiningthedrillingdataandtheminedgeologicalconditionswiththekeystratumtheory.ProvidedthattherockstratumS1isthelowestkeystratumasshowninFig.1,whichcontrolsnlayersofrockstrata(S2,…,Sn,SmarerefertorockstrataaboveS1,and1,2,…,nandmarethelayernumber,wheren<m),thentheloadq1ofnlayersofrockstrataactingonrockstratumS1canbeexpressedasfollows:whereEi,iandhiaretheelasticmodel,thebodyforce,andthethicknessofeachrockstrata(i=1,2,…,n,s,m).Ifaspecificrockstratumisakeystratum,itshouldsimultaneoussatisfytheconditionsofdiscriminationbasedonstiffness(deformation)andstrength,whichcanbepresentedasfollows:whereliindicatesthefirstintervalofroofbreakingoftheithrockstratum.Giventheconditionofafixed-fixedbeam,thefirstintervalofroofbreakingofthe1strockstratumcanbeexpressedasfollows:whereisthelimitofthecompressivebearingcapacity.2.2DiscriminationbasedonstructuralstabilityThestructuralstabilityofakeystratumintheoverlyingstrataisveryimportantforcontrollingwaterinrushunderminingconditions.Ifakeystratumdoesnotbreakduringmining,water-inrushwillnotoccur.Takingacompoundwater-resistantkeystratumoftheoverlyingstrataasanexample,itslowerrockstratummustbeahardrockstratumnomatterwhetheritismadeupofseverallayersofrockstrata.Inordertocarryoutastrengthanalysisofarepresentativecompoundwater-resistantkeystratum,westudiedacompoundwater-resistantkeystratummadeupoffourrocklayers,similartothestructuralprocedurefollowedbyMiaoetal[4].ItsmechanicalmodelisshowninFigs.2and3,wherelistheadvancingdistanceoftheminingworkface,4histheheightofthecrosssectionanditswidthisunitlength.Accordingtothemechanicalmodelofacompoundwater-resistantkeystratum,thenormalstressandshearstressofeachrockstratuminacompositerockbeamcanbecalculatedbyusingEqs.(4)and(5),respectively.Otherwise,theintervalofroofbreakingofthecompositerockbeamcanbeanalyzedbytheMohr-Coulombfailurecriterion,wherethefirstintervalofroofbreakingl1canbecalculatedbyusingEq.(6).Hence,wecandistinguishthestructuralstabilitycharacteristicsofkeystrataintheoverlyingstrata[4].2.3DiscriminationbasedonseepagestabilityAccordingtotheseepagetheoryofaminedrockmass,wecantheoreticallydecidewhetherabrokenstructuralkeystratumintheoverlyingstratastillhastheabilityofwater-resistance,orstillisawater-resistantkeystratum[6-11].Wehaveusedthenrocklayers(includingthekeystratum)betweenthekeystratumandthemainaquifertoanalyzeitspermeabilityandtheseepagecatastrophecoefficientoftheroof(floor)todeterminetheseepagestabilityofthekeystratumintheoverlyingstrata[8-9],whichcanbecalculatedasfollows:whereisthemassdensityofwater;p0–pnthedifferenceinpressurebetweenroof(floor)andaquifer;anon-Darcyflowfactor;μthedynamicviscosity;hjthethicknessofthejthrocklayer;iactheaccelerationcoefficientandkithepermeability.When<1,thecompositerockstratabetweenthekeystratumanditsoverlyingstratastillhastheabilityofwater-resistance,whichcanformacompoundwater-resistantkeystratum,wherewater-inrushaccidentsdonotoccur.When,thecompositerockstratabetweenthekeystratumanditsoverlyingstratadoesnothavetheabilitytoresistwaterandthereforecannotformacompoundwater-resistantkeystratumandwater-inrushaccidentsmayoccur.Accordingtothisthree-stepdiscriminationmethod,wecansolvetheproblemsofwhetherthereisawater-resistantkeystratumintheoverlyingstrataandwhatkindofrockstratumcanformawaterresistantkeystratum.3DiscriminationprocessGivenouranalysisofthedeterminationandconditionsofwater-resistantkeystrata,itcanbeseenthatthedeterminationofwater-resistantkeystrataisacomparativelycomplexsystem.Ourproposedmethodofathree-stepdeterminationisalsoacomparativelycomplexcalculationinpracticeandmaybedifficultinpracticalengineeringapplications.Forconveniencetherefore,wedesignedaspecialprogramforthedeterminationofwater-resistantkeystrataandacorrespondingcomputerprogramforthedeterminationprocessofwater-resistantkeystrataasshowninFig.4.Inputforthecomputerprogramisgeometric,physicalandmechanicalparameters,seepagepropertiesofeachrockstratumintheoverlyingstrata,hydrogeologicalconditionsandotherproperties.Theoutputparametersofthecomputerprogramarestructuralstabilityandseepagestabilityofwater-resistantkeystrata.Elsewhereacorrespondinginterpretationandfeasiblecountermeasuresaregiven.Thedeterminationprogramofthewater-resistantkeystrataincludesfiveparts:astructuralcalculationmoduleofthekeystratum,ananalyticalseepagecharacteristicsmodule,adatabasemodule,afuzzyreasoningmoduleandaninterpretationmodule.Thestructuralcalculationmodulelargelycalculatesstructuralstabilityofthekeystratum,includingaforcedstateandthefirstintervalofroofbreakingofthekeystratum.Theseepagecharacteristicmodulemainlycalculatestheseepagestabilityofthebrokenkeystratum.Thedatabasemodulepreservesthephysicalandmechanicalcharacteristicparametersandseepagepropertiesofeachrockstratumandapartoftheexpertknowledgethatcanbeusedbyfuzzyreasoning.Thefuzzyreasoningmoduledeterminesthedeletedparametersbasedonreasoninggivenaconditionofscarcityofdata.Theinterpretationmodulemainlyinterpretstheobtainedresultsandpresentsexpertopinionsandsuggestions,inaccordancewithmanytypesofconditions.4ExampleanalysisThestrikelengthofthe12610fully-mechanizedworkfaceintheDaliutacoalmineoftheShendongminingareais5293.4mandthelengthofitsinclination239.8m,sotheareaoffully-mechanizedworkfaceis1269357m2.Thecoalseampitchisaround1°~5°anditsaveragethickness5.19m.Thegeologicalreservesareabout8498474tandtherecoverablereservesapproach7903581t.Giventhecapacityofthemine,thiscanbeminedoveraperiodof10months.The12610fully-mechanizedworkfacehas141setsofJOY8670installedforsupportandisequippedwithasetofJOY7LSshearers.The12610workfacebelongstothespringareaofHalagouandSanbulago,andthereisaQuaternaryloosebedandYananformationbedrockintheoverlyingstratumofthe2–2-coalseam.Loosesoilsarefrom10~100mthick,withanaverageof67m.Thereisasandygravellayeratthebottomofthisloosebed,0~15mthick,withanaverageof6.3m(thesandygravellayerintheBaijiaquditchis2.4~9.6mthick).ThethicknessoftheYananformationbedrockintheoverlyingstratumis27.5~65.0m,withanaveragethicknessof48m(theYananformationbedrockintheBaijiaquditchis27.5mthick).Onthefirstcavingsegmentofthecut-hole,theYananformationbedrockisabout60mthick,theloosebed50m,theweatheredbedrock22mandthesandygravellayerbetween0~5m.Thefirstcavingsegmentofthecut-holebelongstotheareaofloosebedswithlotsofwater.Thephysicalandmechanicalparametersoftheroofrockstrataofthe12610workfaceareshowninTable1.Accordingtoourthree-stepdiscriminationmethodofthewater-resistantkeystrata,wemustfirstidentifythepositionofthestructuralkeystratumintheoverlyingstrata.Onthebasisofthephysicalandmechanicalparametersoftheroofrockstrataofthe12610workface,wedeterminedthatthemainroof,18mthick,isthestructuralkeystratumoftheminingoverlyingstratabasedonourtheoreticalcalculation,usingEq.(2).Thedeformationandmovementofthemainroofleadstothemovementofalloverlyingstrata.Sothemainroofcanformasinglewater-resistantkeystratumuntilitbreaks.Themainroofwillcausethemovementofalloverlyingstratawhenitbreaks.Secondly,wemustdeterminethestructuralstabilityofstructuralkeystrataintheoverlyingstrata.Wecalculatedthebearingload1qandthefirstbreakingintervall1ofthekeystratabasedonthephysicalandmechanicalparametersoftherockstrata,giveninTable1.Thecalculatedresultscanbeexpressedasfollows:Weknowfromthecalculatedresults,thatthekeystratamustbreakwhenthe12610workfaceispushed.However,fromTable1,wecanseethatthereisasoftclayeyrockbetweenthekeystratumandtheaquifer(betweenthefirstandthesecondaquifer)Weshouldalsodeterminefromtheseepagecalculationwhetherthecompoundwater-resistantkeystratum,acombinationofthekeystratumandthesoftclayeyrock,hasawater-resistantfunction.So,inathirdstep,wemustidentifythepermeabilityperformanceofthecompoundkeystratathatcombinesthekeystratumandthesoftclayeyrock.Thereare10layersofrockstrataabovethe12610workface.Themassdensityofwateris1000kg/m3anditsdynamicviscosityTheaveragepressuredifferencebetweenthe12610workfaceanditsupperaquifer,i.e.,p0–pnis0.8MPa.Basedontherockstratastrainfields,calculatedbyRFPAsimulation,wecanobtaintheseepagepropertiesofeachlayerwhentheworkfaceadvances50m,asshowninTable2.Accordingtotheseepagepropertiesofeachlayer,asshowninTable2andEq.(7),wecancalculatetheseepagecatastrophecoefficientasfollows:Fromthisresult,weseethattheseepagecatastrophecoefficientwhentheworkfaceadvances50mandtheoverlyingstratacannotformacompoundwater-resistantkeystratum,sothataccidentsofwater-inrushwilloccur.Therefore,wemusttakemeasurestopreventwater-inrushandtoensuresafeminingattheworkface.5Conclusions1)Whetherthereisawater-resistantkeystratumintheoverlyingstratashouldbeconsideredfromtwosides.Infirstinstance,weshouldconsiderwhetherthereisarockstratumcontrollingthemovementoftheoverlyingstrataabovethecoalseam(roof)orbelowcoalseam(floor).Thisrockstratumcanbeeitherasinglerockstratumcalledthestructuralkeystratumoracompoundstratumwhichcancontrolthemovementoftheoverlyinginaspecialcombinationofseveralweakrocklayersandahardrockstratum.Theserockstratahavetheabilitytoresistwaterwhentheirstructureremainsstableanddoesnotbreak.Secondly,theriskofwater-inrushcanbejudgedbytheabruptchangesinthecharacteristicsofthebrokenrockseepage,whentherockstratumbreaksdurinmining.Ifthereisnowater-inrushfromthebrokenrockstratum,wecanconcludethattheserockstrataarewater-resistantkeystrata.2)Wehavepresentedathree-stepdiscriminationmethodofwater-resistantkeystrata.Wefirstidentifiedthepositionofthestructuralkeystratumintheoverlyingstrata.Secondly,weidentifiedthestructuralstabilityofthisstructuralkeystratumintheoverlyingstrata.Finally,weidentifiedtheseepagestabilityofstructuralkeystratum,alsointheoverlyingstrata.Weoutlinedthecorrespondingdiscriminationconditionsandthecalculationformulaforthewater-resistantkeystratum.3)Basedonthethree-stepdiscriminationmethodofthewater-resistantkeystratum,wehavepresentedthediscriminationprocessofthewater-resistantkeystratumanditscorrespondingcomputerprogram.4)Practicalapplicationsindicatethatthisdiscriminationmethodanditscorrespondingcomputerprogramofwater-resistantkeystrataareaccurateandreliable,whichcansatisfytheactualdesignneedsofwater-preservationminingandarethereforeofinstructionalimportanceforwater-preservationmininginareasshortofwater.References[1]QianMG,MiaoXX,XuJL,MaoXB.TheoryofKeyStratainStrataControl.Xuzhou:ChinaUniversityof[2]QianMG,MiaoXX,XuJL.Resourcesandenvironmentharmonics(green)mining.JournalofChinaCoalSociety,2007,32(1):1-7.(InChinese)[3]QianMG,MiaoXX,XuJL.Resourcesandenvironmentharmonics(green)mininganditstechnologicalsystem.JournalofMining&SafetyEngineering,2006,23(1):1-5.(InChinese)[4]MiaoXX,ChenRH,BaiHB.Fundamentalconceptsandmechanicanalysisofwater-proofkeystratainwater-keepingmining.JournalofChinaCoalSociety,2007,32(6):561-564.(InChinese)[5]MiaoXX,PuH,BaiHB.Principleofwater-resistingkeystrataanditsapplicationinwater-preservedmining.JournalofChinaUniversityofMining&Technology,[6]PuH,MiaoXX,YaoBH,TianMJ.Structuralmotionofwater-resistingkeystratalyingonoverburden.JournalofChinaUniversityofMining&Technology,[7]FengMM,MaoXB,BaiHB,MiaoXX.Analysisofwaterinsulatingeffectofcompoundwater-resistingkeystrataindeepmining.JournalofChinaUniversityof[8]MiaoXX,LiuWQ,ChenZQ.SeepageTheoryofMinedRockMass.Beijing:SciencePress,2004.(InChinese)[9]ChenZQ,MiaoXX,LiuWQ.Analysisonstabilityofparametricsystemofseepageflowinwallrockaffectedbymining.JournalofCenterSouth[10]KongHL,MiaoXX,WangLZ,ZhangY,ChenZQ.Analysisoftheharmfulnessofwater-inrushfromcoalseamfloorbasedonseepageinstabilitytheory.JournalofChinaUniversityofMining&Technology,2007,[11]WangLG,MiaoXX.Cuspcatastrophemodelofrelationsamongpermeability,stressandstrainofrocks.ChineseJournalofRockMechanics&Eng

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论