济三煤矿7.0Mt-a新井设计-深部巷道变形机理及支护技术分析_第1页
济三煤矿7.0Mt-a新井设计-深部巷道变形机理及支护技术分析_第2页
济三煤矿7.0Mt-a新井设计-深部巷道变形机理及支护技术分析_第3页
济三煤矿7.0Mt-a新井设计-深部巷道变形机理及支护技术分析_第4页
济三煤矿7.0Mt-a新井设计-深部巷道变形机理及支护技术分析_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科生毕业论文学院:矿业工程学院专业:采矿工程论文题目:济三煤矿7.0Mt/a新井设计专题:摘要本设计全篇有三个部分:一般部分、专题部分和翻译部分。一般部分为济三矿7Mt/a井型设计。济三煤矿位于山东省西南部,交通便利。井田走向(东西)长约8km,倾向(南北)长约7.5km,井田总面积为55km2。主采煤层为3上、3下及16上号煤,平均倾角为4°,煤层平均总厚为10.21m。井田地质条件较为简单。井田工业储量为91954万t,矿井可采储量66020万t。矿井服务年限为72.55a。矿井涌水量较小,矿井正常涌水量为240m3/h。矿井瓦斯涌出量为0.65m3/t,为低瓦斯矿井。煤层具有自然发火井田为立井单水平开拓,水平标高-540m。矿井采用盘区式准备方式,主运输大巷采用胶带运输机运煤,辅助运输采用无轨胶轮车设备。矿井通风方式为中央并列式通风方式。矿井采用放顶煤采煤方法,采3.6m放5.66m。矿井年工作日为330d,工作制度为“四六”制。日循环进九刀,截深0.865m。专题部分题目是“深部巷道变形机理及支护技术分析”。主要分析我国深部巷道在高应力的状态下所表现的变形特征,以及如何针对不同的条件选择适当的支护时机采取不同的支护方式。翻译部分主要内容为关于破碎软岩巷道变形特征分析,英文题目为:Deformationcharacteristicsofsurroundingrockofbrokenandsoftrockroadway。关键词:济三煤矿设计;软岩巷道;变形特征

ABSTRACTThisdesignconsistsofthreeparts:thegeneralpart,thespecialpartandtranslatedpart.ThegeneralpartisanewdesignofJiNingNO.3mine.JiningminelinesinSouthwestofJininginShanDongprovince.Thetrafficofroadandrailwaytothemineisveryconvenience.Thegeologicalstructureofthisareaissimple.Itisabout8kmintherunfromthenorthtothesouthoftheminefield,andItisabout8kmintherunfromtheeasttothewestoftheminefield.Theareais60km2.Thethirdandthesixteenseamisthemaincoalseam,anditsdipangleis4degree.Thethicknessofthemineisabout10.21minall.Theprovedreservesoftheminefieldare919.54milliontons.Therecoverablereservesare660.20milliontons.Thedesignedproductivecapacityis7milliontonspercentyear,andtheservicelifeofthemineis72.55years.Thenormalwaterinflowofthemineis240m3percenthour,andthegasoutflowis0.65ml/g,andthemineislowgaseousmine.Thecaolseamisself-ignitioninnature.Thefieldhasbeendividedtwomininglevels.Thefirstlevelshouldbelocatedattheleverof-540m,whichuseraiseanddipminingmethodofverticalshaftdevelopment.Themainshaftskipinstallskipandtheauxiliaryshaftinstallcage.Themainentrytransportationofthecoalisusingwiththebelts,andtheauxiliaryentryisusingoftrackandrubbertyrecar.Intheearlierstage,thesystemthatwingventilationislocatedatthecenterisusedinthemine.Inthelaterstage,thesystemthatwingventilationareloctedattheboundaryisusedinthemine.Thecaolminingisexcatingseamin3.6mandreleasingseamin5.66m.IntheJiningNO.3mine,therearethreefourteamseachday,andeachworkteamworkssixhours.Itproduced330d/a.Thetopicofthespecialpartisstratificationminingofthickseamanddeterminingreasonableposition.Mainanalysethedeeproadwayinastateofhighstressdeformationcharacteristicsshown,fordifferentconditionsandhowtoselecttheappropriatesupportingopportunitytotakeadifferentsupportways.ThetranslationpartmainintroducestheDeformationcharacteristicsofsurroundingrockofbrokenandsoftrockroadwayKeywords:minedesigning;softrockroadway;deformationcharacteristics.

目录1矿区概述及井田地质特征 页英文原文DeformationcharacteristicsofsurroundingrockofbrokenandsoftrockroadwayWANGJin-xi1,LINMing-yue1,TIANDuan-xin2,ZHAOCun-liang11KeyLaboratoryofResourceSurveyandResearchofHebeiProvince,HebeiUniversityofEngineering,Handan,Hebei056038,China2TheBureauofLandandResourcesofWu’anCity,Wu’an,Hebei056300,ChinaAbstract:Asimilarmaterialmodelandanumericalsimulationwereconstructedandaredescribedherein.Thedeformationandfailureofsurroundingrockofbrokenandsoftroadwayarestudiedbyusingthesemodels.Thedeformationoftheroofandfloor,therelativedeformationofthetwosidesandthedeformationofthedeepsurroundingrockarepredictedusingthemodel.Measurementsinaworkingminearecomparedtotheresultsofthemodels.Theresultsshowthatthesurroundingrockshowsclearrheologicalfeaturesunderhighstressconditions.Deformationisunequallydistributedacrossthewholesection.Thesurroundingrockexhibitedthreedeformationstages:displacementcausedbystressconcentration,rheologicaldisplacementafterthediggingeffectshadstabilizedanddisplacementcausedbysupportingpressureoftheroadway.Floorheavewasserious,accountingfor65%ofthetotaldeformationoftheroofandfloor.Floorheaveisthemainreasonforfailureofthesurroundingrock.Thereasonsfordeformationofthesurroundingrockarediscussedbasedonthesimilarmaterialandnumericalsimulations.Keywords:softrockroadway;brokensurroundingrock;similaritysimulation;numericalsimulation;deformationcharacteristics1IntroductionAsthedepthofundergroundminingandrailwaytunnelconstructionincreasesfailureproblemsinthesoftrockgetincreasingattentionfromdepartmentsofscientificresearchandconstruction[1].Inthe1970’s,SalamonMDetal.proposedtheenergysupportingtheory.Theythoughtthatthesupportingstructureandsurroundingrockofaroadwayinteractwitheachotheranddeformedtogether.Thesupportingstructureabsorbspartoftheenergythatthesurroundingrockreleasesinthedeformationstage.However,thetotalenergydoesnotchange.YuXFetal.proposedthatthefailureofsurroundingrockofroadwaywastheresultofstressesexceedingthestrengthlimitsoftherock.Landslidechangestheaxisratiooftheroadway,whichleadstostressredistribution,i.e.areductioninhighstressandanincreaseinlowstresstoreachastablebalance.Theroadwaywouldbesteadywhenthestressisequallydistributed:Itsfinalshapeiselliptic.DongFTetal.proposedthetheoryofthebrokenrockzonearoundroadway.Hisbasicviewpointwasthatthebrokenrockzoneofabareroadwayisclosetozero.Althoughelasto-plasticdeformationofsurroundingrockoftheroadwayoccurs,therockneedsnosupporting.Deformationincreaseswithanincreaseinthebrokenrockzone.Andthebiggerthedeformationisthemoredifficultsupportis.Therefore,thepurposeofsupportistopreventharmfuldeforma-tioninthebrokenrockzonearoundroadway[1].ThedistributionoftheplasticzoneandanasymmetricalcontrolmechanismofthesurroundingroadwayrockusingweakstructureswerediscussedinReference[9].Meanwhile,thestabilityofsurroundingrocksofroadwayswasstudiedfromvariouspointsofview.Owingtothelackofresearchrelatedtosoftrockengineeringorlargedeformationsinsoftrock,mostsoftrockroadwaysarecurrentlymaintainedjustafterbeingdug.Theyaredifficulttosupport,whichisadisadvantageforsafeproductioninthemine.Thisseriouslyinfluencestheeconomicbenefitsoftheenterprise.Therefore,thedeformationandsupportofsoftrockroadwayisoneofthekeyproblemsofcoalmining.Developingsafeproductionrequiresbetterinformation[2].Thedeformationofabrokensoftrockroadwayissimulatedbyasimilar-materialexperi-mentandbyanumericalmodelbasedongeologicalconditionsandsupportingparametersofarefitroadway.Theresultsaredescribedinthispaper.Thedeformationandfailurecharacteristicsofabrokensoftrockroadwaywereanalyzedbasedonthemeasuredresults.2Analysisofengineeringconditions2.1GeologicalconditionsTheroadwaystudiedisatalevelof–600m.Thegroundelevationis+160msothetotaldepthoftheroadwayis760m.Theroofoftheroadwayis26mbelowCoal2andtheflooroftheroadwayis14maboveCoal3.Thesurroundingrocksoftheroadwayaremostlygreyandblacksandymudstone.Themine-fieldstructureiscomplex.Thegroundstressishigh:themaximumprincipalstressis25–30MPaatanazimuthof270o–275o.Thecleavagefracturesarewelldevelopedinthesurroundingrockandthereisseriousbrokendeformation.Normalworkwasaffectedbylargerapiddeformationsinmanyoftheroadways.Theeffectisparticularlyobviouswhentheroadwayisbeingdugandcoalisbeingmined.Shrinkageoftheroadwaycrosssectionisgenerally30%andcansometimesreach60%,whichseriouslyaffectssafetyduringproduction.Ageologichistog-ramoftheroadwayisshowninFig.1.Thesectionoftheoriginaldesignisastraightwallwithanarchatthetop.Theoriginalcrosssectionasdesignedwas4.5×3.85m2.AcombinedsupportofU36steeltogetherwithboltingandshotcretewithwiremeshwasapplied.Therowdistanceofthesteelwas600mm;thelengthoftheboltswas2.0m;thediameteroftheboltswas20mm.Aboltwasanchoredwithtworesincartridges.Therowdistanceoftheboltswasalso600mm.ThethicknessoftheshotcretewithC20was150mm.Theoriginalcross-sectionalareaoftheroadwaywas15.1m2.2.2On-the-spotobservationofthedeformationofthesurroundingrockThreestationsaresetinthenorthsecondcartwayforobservingconvergentdeformationofthesurroun-dingrock.Thedeformationoftheroof,floorandsidewallswasobservedandmeasured.Inaddition,multiplepointdisplacementmetersaresetintherooftomeasuremovementinthedeepsurroundingrock.TheconvergentdeformationofthreecrosssectionsisshowninTable1.TheembeddeddisplacementcurveisshowninFig.2.Table1showsthattheconvergentdeformationofthesidewallsisthemostseriousandthattheroofhasthesmallestamountofdeformation.Floorheaveis65%ofthetotaldeformationoftheroofandfloor.Thiscanbeexplainedasfollows.Theroofandsidewallsoftheroadwayhavebeensupported,whichinhibitsdeformationofthesurroundingrockandadjuststhestressinthem.Thefloorbecomestheweakestfreefaceand,therefore,thestressanddeformationmovetowardthefloorresultinginseveredeformationofthefloor[3–5].Theroofandfloorrockismostlyasandymudstonewithinthecoalstratasothestrengthoftherockislowandcleavagefracturesarewelldeveloped.Thatistosay,therockhasalowloadcarryingcapacity.3Simulationstudies3.1SimilarmaterialsimulationsSimilarmaterialsimulationtheorywasusedtoconstructamodelofthegeologicalconditionssurroundingtheroadway.Thedeformationandfailureoftheroadwayasstudiedwithsimilarmaterialsarereportedinthispaper.Becausetheroofandfloorrockoftheroadwayisbrittlethisrockissimulatedbysand,calciumcarbonateandgypsum.Sandistheaggregateandcalciumcarbonate/gypsumisusedasthecementingmaterial.Coallayersaresimulatedbymixingproportionsofflyashintosimilarmaterials.Cleavagerockissimulatedbymica.ThesimilarityparametersareshowninTable2.Themovingpeakstressmethodisusedforimulatingdynamicpressuremining.Thesizeoftheodelis2.0m×2.0m×0.1m.Theloadisappliedbynironmassandajack.Thecircumferentialdisplacementoftheroadway,whichincludesdisplacementsoftheroof,floorandthetwosidewalls,ismeasuredthroughoutloading.Therelationshipbetweenthedeformationofthesurroundingrocksandtheload,aswellastherelationshipbetweendeformationanddisplacementofthesurroundingrock,wasmeasured.ResultsfromthemodelareshowninFig.3.Fig.3showsthatunderalowload(lessthanclass7)theroofsinkingisrapidcomparedtothefloorandsides.Thisisbecausetheroofsurfacewasexposedwhentheroadwaywasexcavated.Theroofsurfaceandconcreteshotcreteclearlydeformtowardtheroadwayspace.Thedeformationofthefloorwasbiggerthantheconvergentdeformationofthesidewalls.Underhighloadsthespeedofdeformationofthefloorandthesidewallsrapidlyincreased;thesedeformationsexceededtheconvergenceoftheroof.Thesedeformationsprogressedfromasymmetrytoequalityandthenbacktoasymmetryagainontheanchoredsegmentsofthesidewallsandroof,inthesupportingmodel,whentheroadwaywasloadedwithanextremelyhighload.Theanchoredsegmentsseparatefromdeepersurroundingrockunderthishighload[6–8].Floorheaveoccurredinthemodelbutdidnotappearhomogeneouslyateverydeformationstage,althoughitwasobviousunderahighload.3.2NumericalsimulationsAsectionofrock40mlongperpendiculartothestrikeand40mhighweresimulated.Thismodelincludedatotalof12stratainthemodel.Theroadwayis5.0m×4.1minsizeandthepull-outlengtheverytimeis1m.ThematerialmechanicalpropertiesusedinthemodelareshowninTable3.Theroadwayisanundergroundroadwaywithbrokensurroundingrock.TheMoore-Coulombcriterion[9]wasusedfornumericallysimulatingthelinearbrokensurfacecorrespondingtotheshearfailure:whereσ1=(1+sinσ)(1-sinσ),σ1isthemaximumprincipalstress,σ3istheminimumprincipalstress,σisthefrictionangleandciscohesiveforce.Thebottomofthemodelisfixed.Thesidesandthetopofthemodelareforcefieldboundarieswiththevalues:Themodelismeshedinto38520geologicalunits,41937nodesand2094supportingunits.Thedisplace-mentandstresscontoursaredrawninFig.4.Thesurroundingrockoftheroofandtheshallowfloorarealowstressregionintheprimarydiggingtime;thestressislowerthanthatofthesidewalls.Theregionsatthebaseanglesoftheroadwayandbelowthebeltlineofthesidewallsareinaconcentratedstressregionwherethestressis10timesthatintheroof.Thestressinthesurroundingrockiscomplicatedandthedeformationoftherockislarge.Thedeformationofthesidewalls,theroof,andthefloorisirregular.Deformationoftheroofismostlyatthefirstdeformationstageafterexcavation,butthebrokenareasofthesidewallsandthefloordeveloprapidlyasthestressincreases.Thedeformationoftheflooristhemostserious[10–11].4ConclusionsThedeformationcharacteristicsofsurroundingrockofbrokenandsoftroadwayarecomplicatedandrelatedtolithology,burieddepth,effectsofthecoalminingfaceandsupportmethods[12].1)Theamountofdeformationislargeandthespeedofdeformationisrapid.Deformationcausesconstrictioninthewholecross-section.Thesurroun-dingrockintegrityisseriouslydamagedinthedepthdirectionwiththefallingoftheroof,spallingoftheribsandtheformationoffloorheave.2)Theresultsshowthatthecharacteristicdeformationofthebrokensoftsurroundingrockisavisiblerheologicaldeformationanddisplacementunderhighstress.Thedeformationanddisplacementareirregularwithinthewholesection.Thedeformationprogressesthroughthreestages:displacementcausedbystressconcentration,rheologicaldisplacementafterdiggingeffectstendtostabilizeanddisplacementcausedbysupportingpressure.3)Floorheaveisseriousandaccountsfor65%ofthetotaldeformationoftheroofandfloor.Floorheaveisthemainreasonforsurroundingrockfailure.Thetypeoffloorheaveisdeterminedbythestructureofthefloorrockintheroadway;theamountoffloorheaveisdeterminedbythestrengthofthefloorrock,itsthicknessanditsfracturehierarchicallevel.AcknowledgementsThisstudywasfinanciallysupportedbytheNationalBasicResearchProgramofChina(No.40773040).References[1]CaiMF,HeMC,LiuDY.RockMechanicsandEngineering.Beijing:SciencePress,2002.(InChinese)[2]WangJX.StudyonSupportingMechanismofShellBoltingandShotcreteinSoftRockRoadwaywithHighStress[Masterdissertation].Handan:HebeiUniversityofEngineering,2007.(InChinese)[3]HeMC,XuNX,YaoAJ,WangJC.Theoryofscstkpinsoftrockroadway.JournalofChinaUniversityofMining&Technology,2000,10(2):107–111.[4]FuGB,JiangZF.MiningPressureControlAroundtheRoadwayinDeepMine.Xuzhou:ChinaUniversityofMining&TechnologyPress,1996.(InChinese)[5]BaiJB,HouCJ.Controlprincipleofsurroundingrocksindeeproadwayanditsapplication.JournalofChinaUniversityofMining&Technology,2006,35(2):145–148.(InChinese)[6]LiJK,WangJA,CuiSH.Studyonpumpexcavationdeformationandfracturewithcomplexstressunderdeepminingandhighpressure.GroundPressureandStrataControl,2005,22(3):12–13.(InChinese)[7]ChenYG,LuSL.StrataControlAroundCoalMineRoadwaysinChina.Xuzhou:ChinaUniversityofMiningandTechnologyPress,1994.(InChinese)[8]WangJX,LiJK,CuiSH,WangY,HaoBB,ZhuYZ,GuoYN.Teststudyongroutingpumpwithhighrheologicalsurroundingrock.JournalofHebeiInstituteofArchitecturalScienceandTechnology,2006(3):87–89.(InChinese)[9]FanKG,JiangJQ.Deformationfailureandnonharmoniouscontrolmechanismofsurroundingrocksofroadwayswithweakstructures.JournalofChinaUniversityofMining&Technology,2007,36(1):54–59.(InChinese)[10]LuSL,FuGB,TangL.Regularityofdeformationofrocksaroundroadwayundermininginfluenceandchangeofrockboltresistance.JournalofChinaUniversityofMining&Technology,1999,28(3):201–203.(InChinese)[11]GaoQC,HeJM,WangDH.Researchonmechanismofrockburstgenerationanddevelopmentforhighstressrocktunnels.JournalofChinaUniversityofMining&Technology,2001,11(2):163–167.[12]QianMG,ShiPW.MiningPressureandStrataControl.Xuzhou:ChinaUniversityofMiningandTechnologyPress,2003.(InChinese)

中文译文破碎软岩巷道变形特征分析王金喜1,林明月1,田端心2,赵存良11河北省资源勘测研究重点实验室,河北工程大学,邯郸,056038,中国2武安市土地资源局,武安市,河北056300,中国摘要:构建相似材料模型和数值模拟,使用这些模型研究破碎软岩巷道的破坏和失效。利用该模型预测顶底板的变形量和两帮相对变形量和和深部围岩的变形量。矿山实际测量的结果和模拟结果进行比较表明围岩在高应力条件下显示清晰的流变特性。变形是不均匀分布在整个过程中。围岩变形表现出三个阶段:开挖过程中应力集中引起的变形、开挖后稳定变形阶段和支撑压力引起的位移。底鼓严重,占顶底板移近量得65%以上。底鼓是围岩破坏的主要原因。在相似材料模拟和数值模拟的基础上对围岩变形的原因进行了讨论。关键词:软岩巷道;破碎围岩;相似模拟;数值模拟;变形特征1引言随着地下采矿和隧道工程的不断加深软岩巷道所遇到的问题日益引起了研究和建设部门的重视。在20世纪70年代,萨拉蒙医师等人提出了能量支撑理论。他们认为,支持结构和巷道围岩相互作用并且一起变形。支撑结构吸收了部分围岩变形阶段所释放的能量。然而,总能量不会改变。于学峰等认为巷道破坏是应力超过了岩石的强度极限的结果。开挖改变了原有结构从而导致应力重新分布,即在高应力区减少和在低应力区增加,最终达到重新平衡状态。巷道将处于稳定状态当应力分布均匀:其最终的形状为椭圆形。董方庭等提出了围岩松动圈理论。他的基本理论是一个光秃秃的巷道围岩破裂区接近于零。虽然围岩发生弹塑性变形,巷道并不需要支撑。随着围岩松动圈的增大巷道的支护越困难。因此,支持的目的是为了防止围岩松动圈的破坏。塑性区的分布及使用弱结构控制巷道围岩中非对称控制在参考文献[9]进行了讨论。同时,周边巷道围岩稳定性从不同的观点进行了研究。由于软岩有关的工程或软岩大变形研究的缺乏,许多软岩巷道再它开挖后就一直再不停的修复。软岩巷道难以支撑,这不利在煤矿安全生产,严重影响了企业的经济效益。因此,软岩巷道的变形和支护是煤炭开采中的关键问题之一。发展安全生产需要更好的信息[2]。利用类似的地质条件参数和巷道支护参数的相似材料模拟实验和数值模拟实验对软岩巷道进行变形分析,结果将在下文介绍。软岩巷道的变形和破坏特征是在测量结果基础上进行分析的。2工程地质条件分析2.1地质条件所研究巷道在-600米水平,地面标高为+160m,所以巷道总深度为760米。该巷道顶板距2号煤26m,巷道底板下距3号煤14m左右。巷道围岩大多是灰色和黑色砂质泥岩。煤层结构较复杂。地应力高,最大主应力为25-30Mpa,方位角为2700–2755。围岩裂隙发育严重且有严重的破碎。许多巷道的正常工作受到快速变形的影响。在巷道开挖阶段和回采阶段变形尤为明显。巷道断面收缩率一般在30%左右,有时可能会达到60%,严重影响安全生产。巷道顶底板柱状图如图1所示。巷道的原设计断面为拱形,掘进断面4.5m×3.85m,采用加锚网喷支护。U型钢的排距为600毫米;锚杆的长度为2.0米,直径为20毫米,2个树脂药卷锚固,锚杆距离也为600毫米。喷层采用C20混凝土,厚度150mm;巷道断面为15.1m2。2.2现场围岩变形的观测为了得到破碎软岩巷道的变形特点,在北二采区运输巷中设置了3个观测站。分别观测巷道两帮收缩量、顶板下沉量及底臌量。此外,顶板中设置多点位移计来分析深部围岩的移动变形。三个断面收敛变形值见表1。多点测位仪数据见图2。从表一可以看出,巷道两帮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论