金风科技风资源技术专家杨长锋:测风数据长期订正对风资源评估的影响_第1页
金风科技风资源技术专家杨长锋:测风数据长期订正对风资源评估的影响_第2页
金风科技风资源技术专家杨长锋:测风数据长期订正对风资源评估的影响_第3页
金风科技风资源技术专家杨长锋:测风数据长期订正对风资源评估的影响_第4页
金风科技风资源技术专家杨长锋:测风数据长期订正对风资源评估的影响_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1©GOLDWINDSCIENCE&TECHNOLOGYCO.,LTD.测风数据长期订正对风资源评估的影响Theimpactoflong-termcorrectionofwindmeasurementdataonwindresourceassessment北京金风科创风电设备有限公司BEIJINGGOLDWINDSCIENCE&CREATIONWINDPOWEREQUIPMENTCO.,LTD风资源技术部WindResourceAssessmentDepartment高级风资源工程师:杨长锋SeniorWindResourceEngineer:ChangfengYang长期订正的作用及意义Thefunction

andsignificanceoflong-termrevision01算法汇总Algorithmsummary02结果验证Results03结论及相关进展Conclusion&Relatedprogress04CONTENTS目录3长期订正的作用及意义Thefunctionandsignificanceoflong-termrevision数据清理参数计算风速风频分布极端风速入流角湍流切变水平外推垂直外推降低LCOE计算的不确定度,为项目评估提供支持提高载荷输入参数准确性算法汇总AlgorithmsummaryAlgorithmTypeAbbrev.DescriptionLinearLeastSquaresLLSTheclassicleastsquaresfittothescatterplotoftargetandreferencespeedsTotalLeastSquaresTLSAslightmodificationofLLSthatminimizesorthogonaldistancetothebestfitVerticalSliceVSApiecewiselinearfittotthescatterplotoftargetandreferencespeedsVarianceRatioVRAsimplelinearmappingthataimstopreservethevarianceofthetargetdataBulkSpeedRatioBSRThesimplestpossiblealgorithm,basedontheratioofmeanwindspeedsWeibullFitWBLApowerlawfitwhoseparametersderivefromtheWeibullparametersofthetargetandreferencedataSpeedSortSSAlinearfittotherelationshipbetweentargetandreferencecumulativefrequencydistributionsMatrixTimeSeriesMTSAnimplementationoftheclassicmatrixmethodthatwemodifiedtoproducerealistictimeseriesdata整体最小二乘TotalLeastSquaresAlgorithm线性最小二乘LinearLeastSquaresAlgorithm分风速段线性回归VerticalSliceAlgorithm方差比值法VarianceRatioAlgorithm风频拟合法WeibullFitAlgorithm速度追踪法SpeedSortAlgorithm风速序列联合概率分布MartixTimeSeriesAlgorithmCASE1CASE2CASE3CASE4Duration6years6years3years3yearsR^20.6440.5750.6210.598RecoveryRate99.29%99.93%99.69%99.54%Timestepsofcomparison60min60min60min60mintimes212199评价指标WSKWPDAEPSD√?☆★RMSE√?☆★计算结果及验证思路Ideasforverifyingcalculationresults1month3month6month9month12month15monthBSR

0.2124

0.1319

0.0672

0.0442

0.0319

0.0292MTS

0.2067

0.1362

0.1105

0.0686

0.0243

0.0404SS

0.1965

0.1214

0.0590

0.0461

0.0330

0.0323TLS

0.2047

0.1239

0.0602

0.0496

0.0350

0.0332VR

0.2128

0.1311

0.0685

0.0502

0.0347

0.0340WBL

0.2265

0.1386

0.0716

0.0493

0.0342

0.0349LLS

0.1833

0.1073

0.0701

0.0463

0.0377

0.0317时间长度对计算结果的影响Theeffectoflengthofdataonthecalculationresults结果验证-风速Result–WindSpeedMast1Mast2Mast3Mast4BSR0.05720.06050.03250.0406LLS0.04850.05610.02580.0361MTS0.05470.06510.03320.0471SS0.05460.06950.03340.0424TLS0.05960.06790.02910.0426VR0.05870.06960.02870.0430VS0.04450.05150.02500.0367WBL0.06110.06710.02750.0429New0.04590.05250.02390.0327结果验证-K值Result–KvalueMast1Mast2Mast3Mast4BSR0.06900.21550.08990.0783LLS0.53200.58290.45980.4321MTS0.22140.20340.20350.1821SS0.11250.08470.11370.0681TLS0.12130.10240.11200.0980VR0.11350.07710.10590.0817VS0.62020.60130.49020.4373WBL0.10580.07830.10150.0741New0.06100.05790.06780.0383结果验证-风功率密度Result–WindPowerDensityMast1Mast2Mast3Mast4BSR7.934317.397314.76118.3066LLS38.670835.319033.557631.0287MTS18.912116.255417.735715.2753SS8.50776.90768.38656.9202TLS8.48539.23768.98768.4063VR8.09767.36147.76037.1570VS42.350635.116835.485530.6848WBL8.15046.21838.55056.7247New7.56876.12577.04754.2817结果验证-发电量Result–AnnualEnergyProductionMast1Mast2Mast3Mast4BSR152467.2145961.380031.43154478.9LLS105321.1372920.395588.4894103.6MTS126250.5245128.956274.3136752.6SS139641107285.556274.3136752.6TLS140613.8100627.778606.19143524.6VR139840.9108498.678719.25150406.5VS214058492175.366243.53188772.1WBL150526111711.556960.36150968.8New92524.47107033.546819.97104563.3季节因素对长期订正的影响十分重要,随测风时间增加,风速订正不确定度会明显降低。Theinfluenceofseasonalfactorsonlong-termcorrectionis

important.Asthewindmeasurementtimeincreases,thewindspeedcorrectionuncertaintywillbesignificantlyreduced.在进行长期订正时,不仅要注意风速的变化值,同时要注意K值的变化幅度,避免造成风功率密度产生较大差异。Inthelong-termcorrection,toavoidalargedifferenceinthecalculationofthewindpowerdensity.PayattentiontothevariationoftheKvaluewhilepayingattentiontothechangevalueofthewindspeed.结论Conclusion线性回归方法在风速订正上与其他方法差异不大,但会较大幅度改变K值,对发电量计算产生较大影响。尤其是实测风速K值较小时,误差会更加明显。Thelinearregressionmethodhaslittledifferencewithothermethodsinwindspeedcorrection,butitwillchangetheKvaluegreatly,whichhasagreatimpactonthecalculationofpowergeneration.EspeciallywhenthemeasuredwindspeedKvalueissmall,theerrorwillbemoreobvious.优化后的算法与其他MCP算法相比,在风速、K值和发电量计算上误差较小且表现较为稳定。ComparedwithotherMCPalgorithms,theoptimizedalgorithmhaslesserrorinwindspeed,Kvalueandpowergenerationcalculati

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论