大单元4 遗传信息控制生物性状的遗传规律2025年高考总复习优化设计二轮专题生物H课后习题含答案_第1页
大单元4 遗传信息控制生物性状的遗传规律2025年高考总复习优化设计二轮专题生物H课后习题含答案_第2页
大单元4 遗传信息控制生物性状的遗传规律2025年高考总复习优化设计二轮专题生物H课后习题含答案_第3页
大单元4 遗传信息控制生物性状的遗传规律2025年高考总复习优化设计二轮专题生物H课后习题含答案_第4页
大单元4 遗传信息控制生物性状的遗传规律2025年高考总复习优化设计二轮专题生物H课后习题含答案_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大单元4遗传信息控制生物性状的遗传规律2025年高考总复习优化设计二轮专题生物H课后习题含答案层级一基础夯实自测练学生用书P177

1.(2024·湖北黄石三模)现有一只黑豚鼠,研究人员希望确定它是否携带白毛的隐性等位基因。已知该黑豚鼠的亲本都为黑豚鼠。以下方法中最佳的是()A.将该黑豚鼠与另一只黑豚鼠交配,寻找白毛后代B.寻找该黑豚鼠身上的白色毛发C.将该黑豚鼠与白毛豚鼠交配,寻找白毛后代D.寻找该黑豚鼠的亲本所产后代中是否存在白毛后代答案C解析检测待测个体基因型最常用的方法为测交法,即用待测的黑豚鼠个体与白毛豚鼠隐性个体杂交,若后代出现白毛豚鼠,则该黑豚鼠携带白毛的隐性等位基因;若后代全为黑豚鼠,则该黑豚鼠很可能不携带白毛的隐性等位基因。2.(2024·全国甲卷)果蝇翅型、体色和眼色性状各由1对独立遗传的等位基因控制,其中弯翅、黄体和紫眼均为隐性性状,控制灰体、黄体性状的基因位于X染色体上。某小组以纯合体雌蝇和常染色体基因纯合的雄蝇为亲本杂交得F1,F1相互交配得F2。在翅型、体色和眼色性状中,F2的性状分离比不符合9∶3∶3∶1的亲本组合是()A.直翅黄体♀×弯翅灰体♂B.直翅灰体♀×弯翅黄体♂C.弯翅红眼♀×直翅紫眼♂D.灰体紫眼♀×黄体红眼♂答案A解析根据题意,3对性状分别由独立遗传的3对等位基因控制,可设控制果蝇翅型、体色和眼色的3对等位基因分别为A/a、B/b、C/c。A项中亲本的基因型为AAXbXb×aaXBY,F1的基因型为AaXBXb、AaXbY,F1相互交配得F2,F2的表现型及比例为直翅灰体(A_XB_)∶直翅黄体(A_XbXb、A_XbY)∶弯翅灰体(aaXB_)∶弯翅黄体(aaXbXb、aaXbY)=3∶3∶1∶1,A项符合题意。B项中亲本的基因型为AAXBXB×aaXbY,F1的基因型为AaXBXb、AaXBY,F1相互交配得F2,F2的表现型及比例为直翅灰体(A_XB_)∶直翅黄体(A_XbY)∶弯翅灰体(aaXB_)∶弯翅黄体(aaXbY)=9∶3∶3∶1,B项不符合题意。C项中亲本的基因型为aaCC×AAcc,F1的基因型为AaCc,F1相互交配得F2,F2的表现型及比例为直翅红眼(A_C_)∶直翅紫眼(A_cc)∶弯翅红眼(aaC_)∶弯翅紫眼(aacc)=9∶3∶3∶1,C项不符合题意。D项中亲本的基因型为ccXBXB×CCXbY,F1的基因型为CcXBXb、CcXBY,F1相互交配得F2,F2的表现型及比例为灰体红眼(C_XB_)∶灰体紫眼(ccXB_)∶黄体红眼(C_XbY)∶黄体紫眼(ccXbY)=9∶3∶3∶1,D项不符合题意。3.(2024·北京卷)摩尔根和他的学生们绘出了第一幅基因位置图谱,示意图如图,相关叙述正确的是()果蝇X染色体上一些基因的示意图A.所示基因控制的性状均表现为伴性遗传B.所示基因在Y染色体上都有对应的基因C.所示基因在遗传时均不遵循孟德尔定律D.四个与眼色表型相关基因互为等位基因答案A解析题图为果蝇X染色体上一些基因的示意图,性染色体上基因控制的性状总是与性别相关联,题图所示基因控制的性状均表现为伴性遗传,A项正确;X染色体和Y染色体存在非同源区段,所以Y染色体上不一定含有与题图所示基因对应的基因,B项错误;在性染色体上的基因(位于细胞核内)的遗传仍然遵循孟德尔遗传规律,因此,题图所示基因在遗传时遵循孟德尔分离定律,C项错误;等位基因是指位于一对同源染色体相同位置上,控制同一性状不同表现类型的基因,图中四个与眼色表型相关基因位于同一条染色体上,不是等位基因,D项错误。4.(不定项)(2024·黑龙江齐齐哈尔二模)已知果蝇的灰体和黑檀体、红眼和白眼是两对相对性状,灰体(A)对黑檀体(a)为显性,红眼(W)对白眼(w)为显性,已知W/w这对等位基因位于X染色体上。现有纯种的灰体红眼和黑檀体白眼雌雄果蝇若干,某同学用纯种的灰体红眼雌果蝇与黑檀体白眼雄果蝇杂交,F1无论雌雄都为灰体红眼。为进一步探究A、a这对等位基因的位置,两组同学分别独立进行了以下两个实验:①探究A、a这对等位基因是在X染色体上还是在常染色体上;②探究A/a和B/b这两对等位基因是否遵循自由组合定律。不考虑突变和染色体互换,则按下列杂交方法及判断依据,能得出实验结论的是()A.探究实验①:纯种黑檀体雌果蝇与纯种灰体雄果蝇杂交,根据子代表型判断B.探究实验①:F1雌果蝇与纯种灰体雄果蝇杂交,根据F2的雌果蝇表型及比例判断C.探究实验②:F1雌雄果蝇之间相互交配,根据F2的表型及比例判断D.探究实验②:F1雌果蝇与白眼黑檀体雄果蝇测交,根据F2表型及比例判断答案ACD解析纯种黑檀体雌果蝇与纯种灰体雄果蝇杂交,若子代中雌果蝇全为灰体,雄果蝇全为黑檀体,则A、a这对等位基因位于X染色体上,否则位于常染色体上,A项符合题意;F1雌果蝇与纯种灰体雄果蝇杂交,无论基因位于常染色体还是X染色体,F2的雌果蝇表型及比例均相同,不能判断,B项不符合题意;F1雌雄个体之间相互交配,若两对基因遵循自由组合定律,则F2的表型及比例为灰体红眼∶灰体白眼∶黑檀体红眼∶黑檀体白眼=9∶3∶3∶1,否则不遵循,C项符合题意;F1雌果蝇与白眼黑檀体雄果蝇测交,若两对基因遵循自由组合定律,则F2的表型及比例为灰体红眼∶灰体白眼∶黑檀体红眼∶黑檀体白眼=1∶1∶1∶1,否则不遵循,D项符合题意。5.(不定项)(2024·湖南一模)果蝇的性别是由早期胚胎的性指数(X染色体数目与常染色体组数之比,即X∶A)所决定的。X∶A=1时发育为雌性,若基因M发生突变,则发育为雄性;X∶A=0.5时,无法激活基因M而发育为雄性。已知Y染色体只决定雄蝇的可育性,M/m基因仅位于X染色体上,不考虑其他变异。下列说法正确的是()A.对果蝇基因组测序,应测定5条染色体上DNA的碱基序列B.染色体组成为XXY的个体,一定发育为雌性C.XMXm和XmY的果蝇杂交子代雌雄之比为1∶3D.XMXM和XMO的果蝇杂交子代雌雄之比为1∶1答案AC解析对果蝇基因组测序,应测定5条染色体上DNA的碱基序列,即3条常染色体+X+Y,A项正确。X∶A=1时,激活性别相关基因M进而发育为雌性,若基因M发生突变,则发育为雄性;X∶A=0.5时,无法激活基因M而发育为雄性,已知Y染色体只决定雄蝇的可育性,染色体组成为XXY的个体,可能发育为雌性也可能发育为雄性,B项错误。基因型为XMXm的果蝇产生雌配子XM、Xm,基因型为XmY的果蝇产生雄配子Xm、Y,后代基因型为XMXm(雌性)、XMY(雄性)、XmXm(雄性)、XmY(雄性),雌雄比例为1∶3,C项正确。已知Y染色体决定雄蝇的可育性,因此XMO为不可育雄蝇,故无法通过杂交产生后代,D项错误。6.(2024·辽宁模拟)家蚕是ZW型性别决定的经济动物。科研人员利用基因工程将一个致死基因(D)分别导入多只雌蚕的细胞内,已知具有基因D的蚕在持续低温(如10℃)条件下培养会死亡,在20℃条件下培养正常存活。现欲利用转基因雌蚕与普通雄蚕交配,选育在一定条件下只产生雄蚕的“种蚕”。下列操作或分析错误的是()A.将部分子代置于10℃下培养用于鉴定基因D插入的位置,部分子代置于20℃下培养B.若10℃下培养的子代一半死亡,且雌雄比例相当,说明该种雌蚕及其子代可留种C.若10℃下培养存活下来的子代均为雌性,说明基因D插入Z染色体上D.若10℃下培养的子代一半死亡,且均为雌性,说明20℃下培养的子代雌蚕可作“种蚕”答案B解析转基因雌蚕与普通雄蚕交配后产生的子代,有一半个体携带基因D,但是基因D插入的位置不确定,因此需要将部分子代置于10℃下培养,通过观察子代死亡情况鉴定基因D插入的位置,部分子代置于20℃下培养用于选出所需类型后留种,A项正确;若10℃下培养的子代一半死亡,且雌雄比例相当,说明基因D插入常染色体上,该种雌蚕及其子代不可留种,B项错误;若10℃下培养,存活下来的子代均为雌性,说明基因D插入Z染色体上,亲本雌蚕的基因型为ZDW,C项正确;若10℃下培养的子代一半死亡,且均为雌性,说明基因D插入W染色体上,亲本雌蚕的基因型为ZWD,其与普通雄蚕交配,产生的后代在10℃下培养时只有雄性能存活,因此20℃下培养的子代雌蚕可作“种蚕”,D项正确。7.(2023·辽宁卷)(11分)萝卜是雌雄同花植物,其贮藏根(萝卜)红色、紫色和白色由一对等位基因W、w控制,长形、椭圆形和圆形由另一对等位基因R、r控制。一株表型为紫色椭圆形萝卜的植株自交,F1的表型及其比例如下表所示。回答下列问题。F1表型红色椭圆形红色圆形紫色长形紫色椭圆形紫色圆形白色长形白色椭圆形白色圆形比例121242121注:假设不同基因型植株个体及配子的存活率相同。(1)控制萝卜颜色和形状的两对基因的遗传(填“遵循”或“不遵循”)孟德尔第二定律。

(2)为验证上述结论,以F1为实验材料,设计实验进行验证:①选择萝卜表型为和红色长形的植株作亲本进行杂交实验。

②若子代表型及其比例为,则上述结论得到验证。

(3)表中F1植株纯合子所占比例是;若表中F1随机传粉,F2植株中表型为紫色椭圆形萝卜的植株所占比例是。

(4)食品工艺加工需大量使用紫色萝卜,为满足其需要,可在短时间内大量培育紫色萝卜种苗的技术是。

答案(1)遵循(2)紫色椭圆形紫色椭圆形∶紫色长形∶红色椭圆形∶红色长形=1∶1∶1∶1(3)1/41/4(4)植物组织培养解析(1)F1中红色长形∶红色椭圆形∶红色圆形∶紫色长形∶紫色椭圆形∶紫色圆形∶白色长形∶白色椭圆形∶白色圆形=1∶2∶1∶2∶4∶2∶1∶2∶1,为9∶3∶3∶1的变式,故控制两对性状的基因的遗传遵循孟德尔第二定律。(2)F1中红色∶紫色∶白色=1∶2∶1,长形∶椭圆形∶圆形=1∶2∶1,则亲本紫色椭圆形萝卜的基因型为WwRr。以F1为实验材料,验证(1)中的结论,可选择萝卜表型为紫色椭圆形和红色长形的植株作亲本进行杂交实验,得F2,若表型及其比例为紫色椭圆形∶紫色长形∶红色椭圆形∶红色长形=1∶1∶1∶1,则上述结论得到验证。(3)紫色椭圆形萝卜(WwRr)的植株自交,得到F1,表中F1植株纯合子的基因型为WWRR、WWrr、wwRR、wwrr,所占比例是1/4。若表中F1随机传粉,只考虑萝卜颜色,F1的基因型及其比例为WW∶Ww∶ww=1∶2∶1,产生的配子类型及其比例为W∶w=1∶1,雌雄配子随机结合,子代中紫色个体(Ww)占1/2;只考虑萝卜形状,F1的基因型及其比例为RR∶Rr∶rr=1∶2∶1,产生的配子类型及其比例为R∶r=1∶1,雌雄配子随机结合,子代中椭圆形个体(Rr)占1/2,因此,F2植株中表型为紫色椭圆形萝卜的植株所占比例是1/2×1/2=1/4。(4)想要在短时间内大量培育紫色萝卜种苗,可以采用植物组织培养技术。8.(2024·湖南衡阳三模)(11分)杂交育种是提高水稻产量的重要途径,但由于水稻为两性花、花小,因此找到合适的雄性不育系是杂交育种的关键。研究发现一种光温敏不育株的形成与4号染色体上的M基因突变有关,M基因编码一个在花药中高效表达的GMC氧化还原酶,突变会导致光温敏雄性不育。细胞学分析表明,突变体在高温下花粉外壁发生异常,导致花粉破裂,但低温下外壁第二层的结构虽然变薄但仍然完整。(1)由题可知水稻花粉育性这一表型由决定。M基因通过,进而控制生物体的性状。

(2)该光温敏雄性不育型作为与野生型杂交后,F1自交,F1植株上收获的种子中光温敏雄性不育型占1/4;说明不育型是由(填“显性”或“隐性”)基因决定的;以F2雄性不育株为母本,授以F2其他植株花粉,收获的种子中光温敏雄性不育型所占比例为,但是无法直接辨别不育和可育种子。

(3)为了解决这一分辨种子育性的难题,科学家尝试将单个绿色荧光蛋白基因g导入野生型植物的染色体上,将改造后的野生型和光温敏雄性不育型杂交,选择种子单独种植,从子代中选择种子即为光温敏雄性不育型。

答案(1)基因和环境控制酶的合成来控制代谢(2)母本隐性1/3(3)4号绿色(或能合成绿色荧光蛋白的)非绿色解析(1)根据题意可知,光温敏不育株的形成与4号染色体上的M基因突变有关,突变体在高温下花粉外壁发生异常,导致花粉破裂,但低温下外壁第二层的结构虽然变薄但仍然完整,说明水稻花粉育性这一表型由基因和环境共同决定。M基因编码一个在花药中高效表达的GMC氧化还原酶,说明M基因通过控制酶的合成来控制代谢,进而控制生物体的性状。(2)光温敏雄性不育型在高温下不能产生雄配子,但可作为母本与野生型杂交,杂交的子一代为杂合子,F1自交后植株上收获的种子中光温敏雄性不育型占1/4,说明不育型是由隐性基因决定的,即光温敏雄性不育型的基因型为mm。F1植株上收获的种子基因型及比例为MM∶Mm∶mm=1∶2∶1,即F2植株的基因型及比例为MM∶Mm∶mm=1∶2∶1,以F2雄性不育株(mm)为母本,授以F2其他植株(2/3Mm、1/3MM)花粉,即花粉类型和比例为M∶m=2∶1,所以收获的种子中光温敏雄性不育型(mm)所占比例为1/3。(3)为了解决这一分辨种子育性的难题,科学家尝试将单个绿色荧光蛋白基因g导入野生型植物的4号染色体上,使M基因与g连锁(记为Mg),将改造后的野生型(MgM)和光温敏雄性不育型(mm)杂交,子代基因型为Mgm、Mm,基因型为Mm的植株自交后代M_和mm都不带绿色荧光标记,因此不能区分是否为雄性不育个体,故应选择绿色种子(Mgm)单独种植,自交后代中mm不带绿色荧光标记,而野生型含Mg,带有绿色荧光标记,所以从子代中选择非绿色种子即为光温敏雄性不育型。9.(2024·辽宁大连二模)(10分)果蝇的卷翅、直翅由一对等位基因A、a控制,红眼、紫眼由另一对等位基因D、d控制。为确定控制果蝇翅形和眼色的两对等位基因在染色体上的位置,实验小组用果蝇的纯合品系进行了杂交实验,结果如图。回答下列问题。(1)分析实验结果可知:翅形的显性性状是,判断的依据是;眼色基因位于染色体上,紫眼是(填“显”或“隐”)性性状。

(2)分析结果发现,翅形基因可能位于常染色体上,也可能位于X、Y染色体同源区段。请从上述实验材料中选择果蝇进行一次杂交实验来确定。杂交方案:选杂交,统计子代雄性的表型。

预期结果:若子代雄性的表型为,则翅形基因位于常染色体上;若子代雄性的表型为,则翅形基因位于X、Y染色体同源区段。

答案(1)卷翅亲代卷翅和直翅交配,子代都是卷翅X隐(2)F1卷翅雌雄个体直翅、卷翅卷翅解析(1)具有相对性状的纯合子杂交,子一代表现出的性状是显性性状,分析题意,实验小组用果蝇的纯合品系进行了杂交实验,亲代卷翅和直翅交配,子代都是卷翅,说明翅形的显性性状是卷翅;亲代红眼雄性和紫眼雌性杂交,子一代雌性都是红眼,雄性都是紫眼,性状与性别相关联,说明该基因位于X染色体上,结合伴性遗传的特点可知紫眼是隐性性状。(2)要确定翅形基因是位于常染色体上,还是位于X、Y染色体同源区段,可选择F1卷翅雌雄个体进行杂交,统计子代雄性的表型:若翅形基因位于常染色体上,则子一代雌雄个体的基因型都是Aa,杂交后子代雄性的基因型为A_、aa,表现为直翅、卷翅两种表型;若翅形基因位于X、Y染色体同源区段,则子一代雌雄个体的基因型是XAXa、XaYA,杂交后子代雄性的基因型为XAYA、XaYA,雄性都是卷翅。层级二关键突破提升练学生用书P179

突破点1常规及特殊遗传现象试题的解题规律和方法1.(2024·北京模拟)在一对相对性状的杂交实验中,F1的自交后代和回交(F1与某一亲本杂交)后代都有返祖为初始亲本的倾向。遗传学上把与亲本基因型相同的概率定义为“返祖率”,相关基因用D/d表示。下列叙述错误的是()A.从F1开始连续自交,子代的返祖率逐渐升高B.F1自交后代与回交后代有相同的返祖率C.从F1开始,每代个体均与亲本DD回交,返祖率会逐渐降低D.返祖现象的发生与等位基因的分离有关答案C解析在一对相对性状的杂交实验中,假设亲本的基因型分别为DD和dd,从F1开始连续自交,自交至Fn时,Dd占1/2n,DD和dd共占1-1/2n,返祖率逐渐升高,A项正确;F1自交后代的基因型及比例为DD∶Dd∶dd=1∶2∶1,返祖率为1/2;F1与DD或dd回交,后代的基因型及比例为DD∶Dd=1∶1或Dd∶dd=1∶1,返祖率均为1/2,与F1自交后代返祖率相同,B项正确;F1与DD回交,F2的基因型及比例为DD∶Dd=1∶1,返祖率为1/2,F2再与亲本DD回交,F3的基因型及比例为DD∶Dd=3∶1,返祖率为3/4,Fn的返祖率为1-1/2n-1,会逐渐增加,C项错误;在一对相对性状的杂交实验中,后代出现与亲本相同的基因型,是等位基因分离的结果,D项正确。2.(不定项)(2024·湖南长沙二模)某植物无性染色体,性别由两对等位基因决定,M基因决定雄性可育,m基因决定雄性不育;F基因决定雌性不育,f基因决定雌性可育。自然种群中该植物只有雄株和雌株(各占一半),已知该植物没有染色体互换和遗传致死现象。下列叙述正确的是()A.两对等位基因的遗传可能遵循基因的自由组合定律B.该群体中雄株基因型为MmFf,雌株基因型为mmffC.m基因和f基因在群体中的基因频率均为3/4D.通过单倍体育种可获得雌雄同体的该植株答案BC解析分析题意,M基因决定雄性可育,m基因决定雄性不育;F基因决定雌性不育,f基因决定雌性可育,该植物自然繁殖群体中只有雄株和雌株,且比例相等,则M和F连锁,m和f连锁,故其不符合自由组合定律,A项错误;由题意知,m基因决定雄性不育,f基因决定雌性可育,因此雌株的基因型是mmff,由于雌株不产生含有MF的雌配子,因此雄株的基因型是MmFf,B项正确;正常情况下,该群体中雄株基因型是MmFf,雌株基因型是mmff,m的基因频率=3/4,f的基因频率也是3/4,C项正确;由于该植物没有染色体互换,不能产生基因型为Mf的花粉,也不能产生基因型为MMff的雌雄同体植株,D项错误。3.(2024·湖南岳阳三模)研究发现某昆虫的体色,灰色和黑色是一对相对性状,分别由基因A、a控制,但是基因A的外显率为80%(即具有A基因的个体只有80%是灰色,其余20%的个体为黑色)。现将一对相对性状的亲本杂交,下列判断正确的是()A.若只考虑体色,F1黑色个体都是纯合子B.亲本的杂交组合方式只有2种C.若F1灰色个体与黑色个体之比为3∶2,亲本的基因型一定相同D.F1自由交配,获得的F2灰色个体和黑色个体的比例与F1相同答案C解析在不能确定亲本基因型的情况下,由题意可知黑色个体的基因型有三种,即AA、Aa、aa,在只考虑控制体色的基因的情况下,F1黑色个体不都是纯合子,A项错误;由题意可知,灰色个体的基因型有AA、Aa两种,黑色个体的基因型有AA、Aa、aa三种,因此,亲本的杂交组合方式有6种,B项错误;若F1灰色个体与黑色个体之比为3∶2,则亲本的基因型均为Aa,即亲本基因型一定相同,C项正确;若题中亲本的基因型为AA和aa,则F1的基因型为Aa,表型及比例为灰色∶黑色=4∶1,F1自由交配,F2的基因型为AA∶Aa∶aa=1∶2∶1,因为具有A基因的个体只有80%是灰色,其余20%的个体为黑色,则F2的表型及比例为灰色∶黑色=3/4×4/5∶(1/4+3/4×1/5)=3∶2,D项错误。4.(2024·浙江卷)某昆虫的翅型有正常翅和裂翅,体色有灰体和黄体,控制翅型和体色的两对等位基因独立遗传,且均不位于Y染色体上。研究人员选取一只裂翅黄体雌虫与一只裂翅灰体雄虫杂交,F1表型及比例为裂翅灰体雌虫∶裂翅黄体雄虫∶正常翅灰体雌虫∶正常翅黄体雄虫=2∶2∶1∶1。让全部F1相同翅型的个体自由交配,F2中裂翅黄体雄虫占F2总数的()A.1/12B.1/10C.1/8D.1/6答案B解析翅型有正常翅和裂翅,假设控制翅型的基因为A、a,体色有灰体和黄体,假设控制体色的基因为B、b。控制翅型和体色的两对等位基因独立遗传,可知两对基因的遗传遵循自由组合定律。研究人员选取一只裂翅黄体雌虫与一只裂翅灰体雄虫杂交,F1表型及比例为裂翅灰体雌虫∶裂翅黄体雄虫∶正常翅灰体雌虫∶正常翅黄体雄虫=2∶2∶1∶1,分析F1表型可以发现,雌虫全为灰体,雄虫全为黄体,又因为控制翅型和体色的两对等位基因均不位于Y染色体上,因此可推测控制体色的基因位于X染色体上,且黄体为隐性性状。裂翅黄体雌虫与裂翅灰体雄虫杂交,F1出现了正常翅的性状,可以推测裂翅为显性性状,正常翅为隐性性状,且子代雌雄的表型比例相同,可推知控制体色的基因位于常染色体上。由以上分析可以推出亲本裂翅黄体雌虫的基因型为AaXbXb,裂翅灰体雄虫的基因型为AaXBY。AaXbXb和AaXBY杂交,正常情况下,F1中裂翅∶正常翅=3∶1,实际得到F1中裂翅∶正常翅=2∶1,推测存在AA致死。AaXbXb和AaXBY杂交,F1表型及比例为裂翅灰体雌虫(AaXBXb)∶裂翅黄体雄虫(AaXbY)∶正常翅灰体雌虫(aaXBXb)∶正常翅黄体雄虫(aaXbY)=2∶2∶1∶1。将两对基因分开计算,先分析Aa和Aa,子代Aa∶aa=2∶1,让全部F1相同翅型的个体自由交配,即2/3Aa自由交配、1/3aa自由交配,2/3Aa自由交配,因AA致死,子代为1/3Aa、1/6aa;1/3aa自由交配,子代为1/3aa,因此子代中Aa∶aa=2∶3,即Aa占2/5,aa占3/5。再分析XBXb和XbY,后代产生XbY的概率是1/4,综上可知,F2中裂翅黄体雄虫(AaXbY)占F2总数的比例为(2/5)×(1/4)=1/10。5.(2024·湖北卷)不同品种烟草在受到烟草花叶病毒(TMV)侵染后症状不同。研究者发现品种甲受TMV侵染后表现为无症状(非敏感型),而品种乙则表现为感病(敏感型)。甲与乙杂交,F1均为敏感型;F1与甲回交所得的子代中,敏感型与非敏感型植株之比为3∶1。对决定该性状的N基因测序发现,甲的N基因相较于乙的缺失了2个碱基对。下列叙述正确的是()A.该相对性状由一对等位基因控制B.F1自交所得的F2中敏感型和非敏感型的植株之比为13∶3C.发生在N基因上的2个碱基对的缺失不影响该基因表达产物的功能D.用DNA酶处理该病毒的遗传物质,然后导入正常乙植株中,该植株表现为感病答案D解析甲为非敏感型,乙为敏感型,甲与乙杂交,F1均为敏感型,说明敏感型为显性性状;F1与甲回交所得的子代中,敏感型与非敏感型植株之比为3∶1,是1∶1∶1∶1的变式,说明该相对性状由两对等位基因控制,A项错误;只要显性基因存在,就表现为显性,所以F1自交所得的F2中敏感型和非敏感型的植株之比为15∶1,B项错误;甲的N基因相较于乙的缺失了2个碱基对,但在甲中表现为非敏感型,在乙中表现为敏感型,说明这2个碱基对的缺失影响该基因表达产物的功能,C项错误;烟草花叶病毒是RNA病毒,用DNA酶处理不会破坏其分子结构,所以用DNA酶处理该病毒的遗传物质,并将其导入正常乙植株中,该植株表现为感病,D项正确。6.(不定项)(2024·吉林长春模拟)三叶草(2n)的花色由A/a和B/b两对等位基因控制,A基因控制红色素的合成,B基因控制蓝色素的合成,含A、B基因的三叶草开紫花,不含A、B基因的三叶草开白花。现将纯合紫花与白花三叶草杂交得F1,F1全为紫花三叶草,F1自交得F2,F2三叶草中紫花∶红花∶蓝花∶白花=41∶7∶7∶9。不考虑基因突变和致死,下列叙述正确的是()A.A/a和B/b基因的遗传均遵循基因的分离定律B.F2与F1三叶草基因型相同的个体占5/16C.F1形成配子时,有1/4的细胞在四分体时期染色体发生了互换D.F2中的红花三叶草与蓝花三叶草杂交,子代中白花三叶草占9/49答案ABD解析由题可知,白花三叶草基因型为aabb,纯合紫花三叶草基因型为AABB,红花三叶草基因型为A_bb,蓝花三叶草基因型为aaB_,白花三叶草(aabb)与纯合紫花三叶草(AABB)杂交,F1基因型为AaBb,F1自交得F2,F2三叶草中紫花∶红花∶蓝花∶白花=41∶7∶7∶9,即A_∶aa=(41+7)∶(7+9)=3∶1,同理B_∶bb=(41+7)∶(7+9)=3∶1,A/a和B/b基因的遗传均遵循基因的分离定律,A项正确。由于F2的比例不是9∶3∶3∶1或其变式,因此两对基因的遗传不符合自由组合定律,F1紫花三叶草的基因型为AaBb,且A、B基因位于一条染色体上,a、b基因位于同源的另一条染色体上。根据F2中白花三叶草(aabb)所占比例为9/64分析,F1产生的四种配子的比例为AB∶Ab∶aB∶ab=3∶1∶1∶3,F2中AaBb所占比例为20/64,即5/16,B项正确。若不发生互换,F1产生的两种配子为AB∶ab=1∶1,现F1产生的四种配子的比例为AB∶Ab∶aB∶ab=3∶1∶1∶3,说明F1形成配子时,有1/2的细胞在减数分裂Ⅰ前期染色体发生了互换,C项错误。F2中的红花三叶草(1/7AAbb、6/7Aabb)与蓝花三叶草(1/7aaBB、6/7aaBb)杂交,红花三叶草产生的配子类型及比例为Ab∶ab=4∶3,蓝花三叶草产生的配子类型及比例为aB∶ab=4∶3,子代中白花三叶草(aabb)占3/7×3/7=9/49,D项正确。7.(2024·贵州二模)(12分)某植物叶形、叶色和能否抗霜霉病三对相对性状分别由A/a、B/b、D/d三对等位基因控制,三对等位基因独立遗传。现有表型不同的4种植株:板叶紫叶抗病(甲)、花叶绿叶感病(乙)、板叶绿叶抗病(丙)和花叶紫叶感病(丁)。兴趣小组利用上述材料开展一系列杂交实验,实验过程及结果如下。实验一:甲×乙,子代性状与甲相同。实验二:丙×丁,子代出现个体数相近的8种不同表型。回答下列问题。(1)兴趣小组完成上述杂交实验需进行人工异花传粉。一般情况下,对两性花进行人工异花传粉的步骤是。

(2)根据杂交实验结果,可以推断甲、乙、丙和丁植株的基因型分别为、和、。

(3)选择某一未知基因型的植株N与丙进行杂交,统计子代个体性状。若发现叶形的性状比例为3∶1、叶色的性状比例为1∶1、能否抗病的性状比例为3∶1,则植株N的表型为;让植株N自交,产生的子代基因型有种,表型为花叶绿叶感病的比例是。

答案(1)去雄→套袋→人工授粉→套袋(2)AABBDDaabbddAabbDdaaBbdd(3)板叶紫叶抗病271/64解析(1)两朵花之间的传粉过程叫作异花传粉,两性花人工异花传粉的一般步骤:去雄(要求花蕾期,雌蕊未成熟时,且要求操作干净、彻底)→套袋(去雄后套袋,避免外来花粉的干扰)→授粉(待雌蕊成熟后进行人工授粉)→套袋(避免外来花粉干扰)。(2)甲(板叶紫叶抗病)与乙(花叶绿叶感病)杂交,子代表型与甲相同,可知显性性状为板叶、紫叶、抗病,甲为显性纯合子,基因型为AABBDD,乙为隐性纯合子aabbdd;板叶绿叶抗病丙和花叶紫叶感病丁杂交,子代出现个体数相近的8种不同表型,可推测三对等位基因应均为测交,故丙的基因型为AabbDd,丁的基因型为aaBbdd。(3)已知杂合子自交后代的性状比例为3∶1,测交后代的性状比例为1∶1,故N与丙杂交,叶形的性状比例为3∶1,则亲本为Aa×Aa;叶色的性状比例为1∶1,则亲本为Bb×bb;能否抗病的性状比例为3∶1,则亲本为Dd×Dd;由于丙的基因型为AabbDd,可知N的基因型为AaBbDd,表型为板叶紫叶抗病;让植株N自交,产生的子代基因型有3×3×3=27(种),表型为花叶绿叶感病的比例是1/4×1/4×1/4=1/64。8.(2024·贵州卷)(12分)已知小鼠毛皮的颜色由一组位于常染色体上的复等位基因B1(黄色)、B2(鼠色)、B3(黑色)控制。现有甲(黄色短尾)、乙(黄色正常尾)、丙(鼠色短尾)、丁(黑色正常尾)4种基因型的雌雄小鼠若干,某研究小组对其开展了系列实验,结果如图所示。回答下列问题。(1)基因B1、B2、B3之间的显隐性关系是。实验③中的子代比例说明了,其黄色子代的基因型是。

(2)小鼠群体中与毛皮颜色有关的基因型共有种,其中基因型组合为的小鼠相互交配产生的子代毛皮颜色种类最多。

(3)小鼠短尾(D)和正常尾(d)是一对相对性状,短尾基因纯合时会导致小鼠在胚胎期死亡。小鼠毛皮颜色基因和尾形基因的遗传符合自由组合定律,若甲雌雄个体相互交配,则子代表型及比例为;为测定丙产生的配子类型及比例,可选择丁个体与其杂交,选择丁的理由是

答案(1)B1对B2、B3为显性,B2对B3为显性B1基因具有纯合致死效应,即B1B1个体致死B1B3、B1B2(2)5B1B3与B2B3(3)黄色短尾∶黄色正常尾∶鼠色短尾∶鼠色正常尾=4∶2∶2∶1丁的基因型为B3B3dd,为隐性纯合子,可选其与丙测交来测定丙产生的配子类型及比例解析(1)根据实验③甲(黄色)和乙(黄色)杂交,子代出现鼠色,可判断B1对B2为显性,再结合实验①甲(黄色)和丁(黑色)杂交,子代表型及比例为黄色∶鼠色=1∶1,而黑色未出现,说明B1、B2对B3为显性,即B1、B2、B3的显隐性关系为B1对B2、B3为显性,B2对B3为显性。由实验②乙×丁→子代黄色∶黑色=1∶1可知,乙的基因型为B1B3。实验③甲、乙均为黄色,子代出现鼠色,可推测甲的基因型为B1B2,亲本为B1B2×B1B3,子代表型及比例为黄色∶鼠色=2∶1,说明黄色个体中有纯合致死现象,即B1B1个体致死,故黄色子代的基因型为B1B2、B1B3。(2)小鼠群体中与毛皮颜色有关的基因型有B1B2、B1B3、B2B2、B3B3、B2B3,其中基因型组合为B1B3、B2B3的小鼠相互交配,产生的子代毛皮颜色种类为三种,种类最多。(3)同时考虑毛皮颜色和尾形时,甲(黄色短尾)的基因型为B1B2Dd(DD个体致死),两对等位基因的遗传遵循自由组合定律,甲雌雄个体交配,子代黄色∶鼠色=2∶1,短尾∶正常尾=2∶1,故子代表型及比例为黄色短尾∶黄色正常尾∶鼠色短尾∶鼠色正常尾=4∶2∶2∶1。丙的基因型为B2_Dd,可通过测交实验测定丙产生的配子种类及比例,故可选择与隐性纯合子丁(B3B3dd)进行测交,由后代的表型及比例可推测丙产生的配子类型及比例。9.(2024·广东二模)(10分)蝴蝶兰大多为双瓣花,偶尔也有开单瓣花的品种,双瓣花和单瓣花这对相对性状由等位基因B/b控制。科研人员利用双瓣花蝴蝶兰(其中丙为突变株)进行如下自交实验,结果如下表所示(注:F2为F1自交后代)。回答下列问题。类型PF1F2实验一甲(双瓣)全为双瓣全为双瓣实验二乙(双瓣)3/4双瓣、1/4单瓣5/6双瓣、1/6单瓣实验三丙(双瓣)1/2双瓣、1/2单瓣1/2双瓣、1/2单瓣(1)依据表中实验结果判断双瓣花和单瓣花这对相对性状中,为显性性状,理由是。

(2)分析表中丙植株的基因型为,推测出现实验三中异常遗传实验结果的原因可能是(答出一种即可)。

(3)为验证上述(2)问推测,请选用甲、乙、丙作为实验材料,设计出最简便的实验方案。实验思路:。

预期实验结果和结论:。

答案(1)双瓣花双瓣花乙自交出现“双瓣∶单瓣=3∶1”的性状分离比(或双瓣花自交后代出现性状分离,新出现的单瓣性状为隐性)(2)Bb含双瓣花基因(B)的花粉(精子)致死(或不育)/或含双瓣基因(B)的卵细胞致死(或不育)(3)让丙和乙进行正反交,统计产生子代的表型及比例答案一:若丙作为父本为正交,产生的子代为双瓣花∶单瓣花=1∶1,反交产生的子代为双瓣花∶单瓣花=3∶1,则说明含双瓣花基因(B)的花粉(精子)致死(或不育)答案二:若丙作为母本为正交,产生的子代为双瓣花∶单瓣花=1∶1,反交产生的子代为双瓣花∶单瓣花=3∶1,则说明含双瓣花基因(B)的卵细胞致死(或不育)解析(1)实验二中双瓣花乙自交出现“双瓣∶单瓣=3∶1”的性状分离比,说明双瓣花是显性性状。(2)双瓣丙自交子代出现了单瓣,说明丙的基因型是Bb,但自交子代双瓣花∶单瓣花=1∶1,说明存在致死现象,推测可能是含双瓣基因B的配子致死(或不育)造成,因此可能是含双瓣基因的花粉(精子)致死或含双瓣基因的卵细胞致死(或不育)。(3)若要设计实验验证上述(2)中推测,即要验证是丙产生B的精子还是卵细胞致死(或不育),那么可以采用丙(Bb)和乙(Bb)进行正反交实验。若丙(Bb)作为父本为正交,产生的子代为双瓣花∶单瓣花=1∶1,反交产生的子代为双瓣花∶单瓣花=3∶1,则说明父本丙(Bb)产生的基因型为B的花粉(精子)致死(或不育);若丙(Bb)作为母本为正交,产生的子代为双瓣花∶单瓣花=1∶1,反交产生的子代为双瓣花∶单瓣花=3∶1,则说明母本丙(Bb)产生的基因型为B的卵细胞致死(或不育)。突破点2伴性遗传与遗传系谱图、电泳图谱分析10.(2024·湖南长沙模拟)图1是某种伴X染色体隐性遗传病的家族系谱图,致病基因用d表示,已知女性每个细胞所含的两条X染色体中,总有随机的一条保持紧缩状态而失活。图2是提取该家系部分成员与该病基因有关的DNA片段并进行PCR,然后产物用限制酶Ⅰ酶切后进行电泳,基因d有两个酶切位点,基因D只有1个。下列叙述错误的是()图1图2A.失活染色体的DNA不会随生殖细胞遗传给下一代B.基因D和基因d之间碱基序列的差异是碱基替换造成的C.若Ⅱ-5的丈夫不患该病,不考虑基因突变的情况下他们所生子女一定不患该病D.若将Ⅱ-1有关DNA也做上述处理,电泳结果不可能只有3条带答案A解析由电泳结果可知,限制酶Ⅰ能将基因D切割成310bp和118bp两个片段,将基因d切成310bp和118bp两个片段的基础上,又将310bp这个片段切成217bp和93bp两段,可知,Ⅰ-1、Ⅱ-3和Ⅱ-4的基因型都是XDXd,而Ⅱ-3和Ⅱ-4的d基因来自Ⅰ-1,可见失活染色体的DNA可以随生殖细胞遗传给下一代,A项错误;由电泳结果可知,基因D和基因d的长度是相等的,它们之间碱基序列的差异是碱基对替换造成的,B项正确;由电泳条带可知,Ⅱ-5的基因型是XDXD,她的丈夫若不患该病,那么他们的孩子也不会携带该病基因,因此都不会患该病,C项正确;Ⅱ-1若是纯合子,电泳结果是2条带,若是携带者,电泳结果是4条带,D项正确。11.(2024·全国新课标卷)某种二倍体植物的P1和P2植株杂交得F1,F1自交得F2。对个体的DNA进行PCR检测,产物的电泳结果如图所示,其中①~⑧为部分F2个体,上部2条带是一对等位基因的扩增产物,下部2条带是另一对等位基因的扩增产物,这2对等位基因位于非同源染色体上。下列叙述错误的是()A.①②个体均为杂合体,F2中③所占的比例大于⑤B.还有一种F2个体的PCR产物电泳结果有3条带C.③和⑦杂交子代的PCR产物电泳结果与②⑧电泳结果相同D.①自交子代的PCR产物电泳结果与④电泳结果相同的占1/2答案D解析由于不知显隐性关系,设题图中自上至下4条带分别代表基因A、a、B、b,则F1的基因型为AaBb,①和②的基因型分别为AaBB和Aabb,③和⑤的基因型分别为AABb和AABB,在F2中分别占1/8和1/16,A项正确。F2有9种基因型,除题图中的基因型外,还有aaBb,其PCR产物电泳结果会有3条带,B项正确。⑦的基因型为aabb,③与⑦杂交子代的基因型有Aabb和AaBb2种,而②和⑧的基因型分别为Aabb和AaBb,C项正确。①自交子代的基因型及所占比例为1/4AABB、1/2AaBB和1/4aaBB,与④电泳结果相同的占1/4,D项错误。12.(2024·黑龙江牡丹江一模)短指症是一种单基因遗传病,相关基因用H/h表示。其病因是BMPR基因编码的骨形态发生蛋白受体的第486位氨基酸由精氨酸转变为谷氨酰胺,导致患者的成骨细胞不能分化为正常骨细胞。下图为某短指症家族的系谱图(Ⅰ-2不携带该致病基因)。下列叙述错误的是()A.短指症属于显性遗传病,Ⅱ-3的基因型为HhB.若Ⅱ-3再生育一孩(Ⅲ-2),其基因型与Ⅰ-1相同的概率为1/4C.可以通过基因检测来确定Ⅱ-2是否患短指症D.异常BMPR产生的根本原因是其基因发生了碱基对的替换答案B解析根据系谱图分析,Ⅰ-2不携带致病基因,一定会遗传给Ⅱ-2一个正常基因,Ⅱ-2患病,则该病为常染色体显性遗传病,Ⅱ-3的基因型为Hh,A项正确;Ⅱ-3(Hh)与Ⅱ-4(hh)所生Ⅲ-1基因型为Hh,再生育一孩,其基因型及概率为1/2Hh、1/2hh,Ⅰ-1的基因型为Hh,因此,其基因型与Ⅰ-1相同的概率为1/2,B项错误;短指症属于常染色体显性遗传病,可通过基因检测胎儿的基因型,判断是否患病,C项正确;由于BMPR中仅一个氨基酸发生改变,故推测短指症的发生可能是因为BMPR基因发生碱基对的替换,D项正确。13.(不定项)(2024·黑吉辽卷)位于同源染色体上的短串联重复序列(STR)具有丰富的多态性。跟踪STR的亲本来源可用于亲缘关系鉴定。分析下图家系中常染色体上的STR(D18S51)和X染色体上的STR(DXS10134,Y染色体上没有)的传递,不考虑突变,下列叙述正确的是()A.Ⅲ-1与Ⅱ-1得到Ⅰ代同一个体的同一个D18S51的概率为1/2B.Ⅲ-1与Ⅱ-1得到Ⅰ代同一个体的同一个DXS10134的概率为3/4C.Ⅲ-1与Ⅱ-4得到Ⅰ代同一个体的同一个D18S51的概率为1/4D.Ⅲ-1与Ⅱ-4得到Ⅰ代同一个体的同一个DXS10134的概率为0答案ABD解析假设Ⅰ-1一对同源染色体(常染色体)上的两个D18S51分别用A1、A2表示,Ⅰ-2一对同源染色体(常染色体)上的两个D18S51分别用A3、A4表示。Ⅱ-1得到A1的概率为1/2,Ⅱ-2得到A1的概率为1/2,Ⅲ-1得到A1的概率为(1/2)×(1/2)=1/4,Ⅱ-1与Ⅲ-1都得到A1的概率=(1/2)×(1/4)=1/8。同理,Ⅱ-1与Ⅲ-1都得到A2、A3、A4的概率分别为1/8,1/8,1/8。Ⅲ-1与Ⅱ-1得到Ⅰ代同一个体的同一个D18S51的概率=(1/8)×4=1/2,A项正确。按照同样的方法可得,Ⅲ-1与Ⅱ-4得到Ⅰ代同一个体的同一个D18S51的概率为1/2,C项错误。假设Ⅰ-1一对X染色体上的两个DXS10134分别用B1、B2表示,Ⅰ-2X染色体上的DXS10134用B3表示。Ⅱ-1得到B1的概率为1/2,得到B2的概率为1/2,得到B3的概率为1;Ⅱ-2得到B1的概率为1/2,得到B2的概率为1/2,得到B3的概率为1;Ⅲ-1得到B1概率=(1/2)×(1/2)=1/4,得到B2的概率=(1/2)×(1/2)=1/4,得到B3的概率=1×(1/2)=1/2。Ⅲ-1与Ⅱ-1得到Ⅰ代同一个体的同一个DXS10134的概率=(1/2)×(1/4)+(1/2)×(1/4)+1×(1/2)=3/4,B项正确。DXS10134位于X染色体上,Ⅲ-1的X染色体来自Ⅰ-1或Ⅰ-2,Ⅱ-4的X染色体来自Ⅰ-3和Ⅰ-4,所以Ⅲ-1与Ⅱ-4得到Ⅰ代同一个体的同一个DXS10134的概率为0,D项正确。14.(2024·重庆渝中模拟)AAT是血浆中重要的蛋白酶抑制剂,能保护机体免受蛋白酶的损伤。AAT基因缺陷将引发一系列病症,其中PiM正常的AAT基因,绝大多数正常人的基因型是PiMPiM,PiZPiZ个体血浆中的AAT重度缺乏,PiSPiS个体血浆中的AAT轻度缺乏,但均出现AAT缺乏症。图甲是AAT缺乏症患者的遗传系谱图。对图中部分个体进行了PiM、PiZ和PiS基因检测,结果如图乙所示。下列分析正确的是()甲乙A.由遗传系谱图可知,AAT缺乏症的遗传方式为常染色体显性遗传B.从基因型分析,Ⅰ-4、Ⅱ-3、Ⅲ-2的血浆中AAT浓度依次降低C.临床上通过检测Ⅱ-5的血浆中AAT浓度就能确定其基因型D.若Ⅲ-3与基因型相同的女性结婚,所生的正常孩子中含有PiZ基因的概率是2/3答案D解析由图甲可知,Ⅰ-1和Ⅰ-2均正常,生出患病女儿Ⅱ-3,说明该病为常染色体隐性遗传,A项错误;PiM、PiZ和PiS基因控制合成的AAT含量的关系是PiM>PiS>PiZ,由图乙可知,Ⅰ-4的基因型为PiSPiS,Ⅱ-3的基因型为PiZPiZ,Ⅲ-2的基因型为PiZPiS,因不清楚PiZ、PiS的显隐性关系,所以不能判断Ⅲ-2与Ⅱ-3以及Ⅰ-4与Ⅲ-2的AAT含量关系,B项错误;即使基因型相同的个体,血清的AAT浓度也会存在个体差异,所以检测Ⅱ-5血清的AAT浓度不能确定其基因型,C项错误;Ⅲ-3的基因型为PiMPiZ,与基因型相同的人婚配,所生的正常孩子基因型包括1/3PiMPiM、2/3PiMPiZ,含有PiZ基因的概率是2/3,D项正确。15.(2024·辽宁葫芦岛一模)(10分)研究发现某种昆虫(性别决定为XY型)的2号常染色体上的基因B、b可影响它的性别,无B存在时,性染色体组成为XX的个体发育为雄性不育个体;该昆虫体色中褐色(D)对灰色(d)为显性。为了研究其遗传特点,某小组让灰色雌性个体与褐色雄性个体杂交,所得F1中灰色雄性∶褐色雌性∶褐色雄性=4∶3∶1。不考虑X、Y染色体的同源区段,回答下列问题。(1)B、b和D、d基因的遗传(填“遵循”或“不遵循”)自由组合定律,理由是。

(2)亲本雌、雄个体的基因型分别为和,F1雄性个体的基因型有种,其中不育个体的比例为。

(3)若F1自由交配产生F2,则F2中褐色雄性个体所占比例为,F2雌性个体中杂合子的比例为。

答案(1)遵循灰色雌性个体与褐色雄性个体杂交,所得F1的雌雄个体的体色及比例不同,说明D、d在X染色体上,又已知B、b在2号常染色体上,因此遵循自由组合定律(合理即可)(2)BbXdXdBbXDY41/5(3)7/244/5解析(1)灰色雌性个体与褐色雄性个体杂交,所得F1中灰色雄性∶褐色雌性∶褐色雄性=4∶3∶1,雄性∶雌性=5∶3(即由1/4雌性转变为雄性),亲本又是可育的,说明亲本基因型均为Bb,雌性全为褐色,且褐色雌性中有1/4发育成雄性不育个体,即子代中体色与性别有关,说明D、d在X染色体上,由题意可知,B、b在常染色体上,说明这两对等位基因是非同源染色体上的非等位基因,遗传遵循自由组合定律。(2)结合(1)可知,亲本基因型为BbXdXd、BbXDY,且无B存在时,性染色体组成为XX的个体发育为雄性不育个体,则F1中雄性个体的基因型有__XdY(3种)+bbXDXd(不育)共4种,其中不育个体比例为(1/4×1/2)/(1/2+1/4×1/2)=1/5。(3)若F1(雌性1/3BBXDXd、2/3BbXDXd,雄性1/4BBXdY、2/4BbXdY、1/4bbXdY,bbXDXd不可育)可产生雌配子2/6BXD、2/6BXd、1/6bXD、1/6bXd,雄配子1/4BXd、1/4BY、1/4bXd、1/4bY,自由交配产生F2,则F2中褐色雄性个体(__XDY+bbXDX-)所占比例为3/6×1/2+1/6×1/4=7/24,F2雌性个体(B_X-X-)中纯合子(BBXdXd)的比例为(2/6×1/4)/(1/2-1/6×1/4-1/6×1/4)=1/5,则杂合子的比例为4/5。16.(2024·河北卷)(13分)西瓜瓜形(长形、椭圆形和圆形)和瓜皮颜色(深绿、绿条纹和浅绿)均为重要育种性状。为研究两类性状的遗传规律,选用纯合体P1(长形深绿)、P2(圆形浅绿)和P3(圆形绿条纹)进行杂交。为方便统计,长形和椭圆形统一记作非圆,结果见表。实验杂交组合F1表型F2表型和比例①P1×P2非圆深绿非圆深绿∶非圆浅绿∶圆形深绿∶圆形浅绿=9∶3∶3∶1②P1×P3非圆深绿非圆深绿∶非圆绿条纹∶圆形深绿∶圆形绿条纹=9∶3∶3∶1回答下列问题。(1)由实验①结果推测,瓜皮颜色遗传遵循定律,其中隐性性状为。

(2)由实验①和②结果不能判断控制绿条纹和浅绿性状的基因之间的关系。若要进行判断,还需从实验①和②的亲本中选用进行杂交。若F1瓜皮颜色为,则推测两基因为非等位基因。

(3)对实验①和②的F1非圆形瓜进行调查,发现均为椭圆形,则F2中椭圆深绿瓜植株的占比应为。若实验①的F2植株自交,子代中圆形深绿瓜植株的占比为。

(4)SSR是分布于各染色体上的DNA序列,不同染色体具有各自的特异SSR。SSR1和SSR2分别位于西瓜的9号和1号染色体。在P1和P2中SSR1长度不同,SSR2长度也不同。为了对控制瓜皮颜色的基因进行染色体定位,电泳检测实验①F2中浅绿瓜植株、P1和P2的SSR1和SSR2的扩增产物,结果如下图所示。据图推测控制瓜皮颜色的基因位于染色体。检测结果表明,15号植株同时含有两亲本的SSR1和SSR2序列,同时具有SSR1的根本原因是,同时具有SSR2的根本原因是。

(5)为快速获得稳定遗传的圆形深绿瓜株系,对实验①F2中圆形深绿瓜植株控制瓜皮颜色的基因所在染色体上的SSR进行扩增、电泳检测。选择检测结果为的植株,不考虑交换,其自交后代即为目的株系。

答案(1)(基因的)分离浅绿(2)P2、P3深绿(3)3/815/64(4)9号F1在减数分裂Ⅰ前期发生染色体片段互换,产生了同时含P1、P2的SSR1的配子F1产生的具有来自P11号染色体的配子与具有来自P21号染色体的配子受精(5)SSR1的扩增产物条带与亲本P1相同解析(1)由实验①可知,P1(长形深绿)与P2(圆形浅绿)杂交,F1全为非圆(包括长形和椭圆形)深绿,F2中瓜皮颜色出现性状分离,且深绿∶浅绿=3∶1,推测瓜皮颜色遗传遵循基因的分离定律,且浅绿为隐性性状。(2)据题表分析可知,由实验①和实验②的结果不能判断控制绿条纹和浅绿的基因之间的关系。若要进行判断,需选择分别具有浅绿性状和绿条纹性状的个体进行杂交,即可选择实验①和实验②亲本中的P2和P3进行杂交。若两基因为非等位基因,设分别为B/b、C/c,则P2关于浅绿的基因型可能为BBcc(或bbCC),而P3关于绿条纹的基因型可能为bbCC(或BBcc),则二者杂交得到的F1关于瓜皮颜色的基因型为BbCc,表现为深绿色。(3)因为实验①的F1非圆形瓜均为椭圆形,亲本中长形和圆形均为纯合子,则F1椭圆形为杂合子,F2中有1/2为椭圆形,有3/4为深绿色,故F2中椭圆深绿瓜植株占比为(1/2)×(3/4)=3/8。设控制瓜形的基因为A/a,控制浅绿的基因型为bbCC,则P1基因型为AABBCC,P2基因型为aabbCC,由实验①中F2的表型和比例可知,圆形深绿瓜的基因型为aaB_CC,则实验①中F2植株自交能产生圆形深绿瓜植株的基因型及比例为1/8AaBBCC、1/4AaBbCC、1/16aaBBCC、1/8aaBbCC,故F2植株自交,子代中圆形深绿瓜植株所占比例为(1/8)×(1/4)+(1/4)×(3/16)+(1/16)×1+(1/8)×(3/4)=15/64。若控制浅绿的基因型为BBcc,可得出同样的结果。(4)电泳检测实验①F2中浅绿瓜植株、P1和P2的SSR1和SSR2的扩增产物,由电泳图谱可知,F2浅绿瓜植株中都含有P2亲本的SSR1,而SSR1和SSR2分别位于西瓜的9号和1号染色体上,故推测控制瓜皮颜色的基因位于9号染色体上。由电泳图谱可知,F2浅绿瓜植株中只有15号植株含有亲本P1的SSR1,推测根本原因是F1在减数分裂Ⅰ前期发生染色体片段互换,产生了同时含P1、P2的SSR1的配子,而包括15号植株在内的半数植株同时含有两亲本的SSR2,根本原因是F1产生的具有来自P11号染色体的配子与具有来自P21号染色体的配子受精。(5)为快速获得稳定遗传的深绿瓜株系,对实验①F2中圆形深绿瓜植株控制瓜皮颜色的基因所在染色体上的SSR进行扩增、电泳检测。稳定遗传的圆形深绿瓜株系应是纯合子,其深绿基因最终来源于亲本P1,故应选择SSR1的扩增产物条带与亲本P1相同的植株。层级三核心素养突破练学生用书P183

1.(不定项)(2024·湖南邵阳模拟)水稻为二倍体植物,染色体组成为2n=24,若体细胞中某对同源染色体多出一条,数目为三条,则称为三体水稻,三体水稻减数分裂时同源染色体随机分离,产生两类配子,一类是n+1型,即配子含有两条该同源染色体,一类是n型,即配子含有一条该同源染色体。卵细胞为n+1型可育,花粉则不育。下列相关叙述错误的是()aA.水稻三体产生的原因可能是在减数分裂Ⅰ后期初级精母细胞同源染色体未分离B.基因型为AAa的三体自交,子代中基因型为AA的个体占1/9C.不考虑染色体来源,水稻可产生三体的种类一共有24种D.某种显性纯合三体和基因型为aa的正常个体杂交,比较F1自交结果可判断a基因是否位于含有3条染色体的同源染色体上答案BC解析结合染色体变异类型分析,三体水稻的形成属于染色体数目变异,形成的原因是减数分裂Ⅰ后期一对同源染色体未分离,移向同一极,或者减数分裂Ⅱ后期某对姐妹染色单体未能分配到两个子细胞中,A项正确;基因型为AAa的三体自交,产生的雌配子的基因型及比例为A∶Aa∶AA∶a=2∶2∶1∶1,雄配子的基因型及比例为A∶a=2∶1,所以子代中基因型为AA的个体比例为1/3×2/3=2/9,B项错误;水稻为二倍体植物,染色体组成为2n=24,含有12对同源染色体,若不考虑染色体来源,水稻可产生三体的种类一共有12种,C项错误;如果a基因不位于该三体的染色体上,则aa和显性纯合子AA杂交,F1全为Aa,子代性状分离比为3∶1,如果a基因位于该三体的染色体上,则aa和显性纯合子AAA(母本)杂交,F1为1/2Aa、1/2AAa,自交子代性状分离比为(1/2×3/4+1/2×17/18)∶(1/2×1/4+1/2×1/18)=61∶11,D项正确。2.(2024·安徽池州二模)(11分)蚕豆病是一种单基因遗传病,患者因红细胞膜缺乏G6PD(葡萄糖-6-磷酸脱氢酶)导致红细胞不能抵抗一些氧化物而损伤,常表现为进食蚕豆后发生溶血性贫血。研究表明,GA、GB、g互为等位基因,且位于X染色体上,GA、GB控制合成G6PD,而g不能控制合成G6PD。图1所示为某家族蚕豆病遗传系谱图,图2所示为该家族部分成员相关基因的电泳图谱。请回答下列问题。图1某家族蚕豆病遗传系谱图图2该家族部分成员基因的电泳图谱(1)蚕豆病患者食用新鲜蚕豆后往往会发生溶血性贫血,推测原因是。

(2)正常情况下,图1中Ⅱ-9个体的基因型为。图1中Ⅱ-7为患者,推测可能是基因突变的结果,也可能是表观遗传。为探究Ⅱ-7患病的原因,现对Ⅱ-7的GA、GB、g进行基因检测,观察电泳图谱:

①若出现一条电泳条带,则为的结果,其基因型应为;

②若出现两条电泳条带,则为的结果,其基因型应为。

(3)雌性哺乳动物细胞中只有一条X染色体具有活性,就使得雌、雄动物之间虽X染色体的数量不同,但X染色体上基因产物的剂量是平衡的,这个过程称为剂量补偿。有研究表明部分女性杂合子(含g基因)表现出蚕豆病症状,推测原因是。已知人群中男性患者概率为10%,若不考虑表观遗传因素,则Ⅲ-11与人群中一健康女子婚配所生子女患病概率为。

答案(1)新鲜蚕豆含有较多氧化物,蚕豆病患者因缺乏G6PD,导致红细胞不能抵抗氧化物而损伤(2)XGAXGA或XGAXg①基因突变XgXg②表观遗传XGBXg(3)女性杂合子中GA或GB所在的X染色体发生失活,无法合成G6PD,所以女性杂合子表现为蚕豆病症状(叙述合理即可)13/44解析(1)根据题意,蚕豆病患者因红细胞膜缺乏G6PD导致红细胞不能抵抗氧化物而发生损伤,推测新鲜蚕豆含有较多氧化物。(2)根据图1和图2可确定3号基因型为XGAXg,4号基因型为XGAY,推测9号基因型为XGAXGA或XGAXg。①7号相关基因电泳图若为1个条带,则基因型应为XgXg,发生了基因突变;②若出现了2个条带,则基因型应为XGBXg,因为GB、g基因发生了表观遗传修饰导致其表达抑制。(3)根据题意分析,女性杂合子(含g基因)中GA或GB所在的X染色体发生失活,无法合成G6PD,所以女性杂合子表现出蚕豆病症状。人群中男性患者概率为10%,则可推出g基因频率为1/10,人群中健康女子的基因型为9/11XG_XG_、2/11XG_Xg,Ⅲ-11的基因型为XgY,故Ⅲ-11与人群中一健康女子婚配所生子女患病概率为1/2XG_Xg+XgXg+XgY=1/2×9/11×1/2+2/11×1/4+2/11×1/4=13/44。3.(2024·辽宁沈阳模拟)(12分)某果蝇的1号染色体为性染色体,其灰身和黑身、长翅和残翅分别由两对等位基因A/a、B/b控制,两对基因均不位于Y染色体上。现有一群灰身长翅雄蝇和黑身残翅雌蝇杂交,F1的表型及比例为灰身长翅(♀)∶黑身长翅(♀)∶灰身残翅(♂)∶黑身残翅(♂)=3∶1∶3∶1,不考虑致死和基因突变的发生。请回答下列问题。(1)上述两对相对性状的显性性状分别为、。

(2)F1的雄性个体能产生种配子,取F1雌、雄个体随机交配,则F2中灰身与黑身个体的比例为。

(3)现F1种群中出现一只表型为灰身的三体雄蝇(2号常染色体有三条),减数分裂时该染色体的任意两条移向细胞一极,剩下的一条移向细胞另一极。欲测定体色基因是否在2号染色体上,将该个体与多只黑身雌性个体(未发生染色体变异)杂交,请回答:①若后代灰身与黑身个体的比例为,则该体色基因在2号染色体上;

②若后代灰身与黑身个体的比例为1∶1,则该体色基因(填“是”“不是”或“不一定”)在2号染色体上。

答案(1)灰身长翅(2)439∶25(3)5∶1不一定解析(1)灰身雄蝇和黑身雌蝇杂交,F1雌雄蝇中的灰身与黑身个体的数量比均为3∶1,说明灰身为显性性状,控制体色的基因位于常染色体上。长翅雄蝇和残翅雌蝇杂交,F1雌蝇均为长翅、雄蝇均为残翅,说明长翅为显性性状,控制翅长的基因位于X染色体上。(2)结合(1)的分析可知:亲本灰身长翅雄蝇的基因型为1/2AAXBY、1/2AaXBY,亲本黑身残翅雌蝇的基因型为aaXbXb,F1的基因型为3/4AaXbY、1/4aaXbY、3/4AaXBXb、1/4aaXBXb,F1的雄性个体能产生基因型分别为AXb、aXb、AY、aY的4种配子。只考虑灰身与黑身,F1产生的雌配子为3/8A、5/8a,F1产生的雄配子也为3/8A、5/8a;取F1雌、雄个体随机交配,在F2个体中,灰身∶黑身=(1-5/8×5/8)∶(5/8×5/8)=39∶25。(3)如果控制体色的基因在2号染色体上,则灰身三体雄蝇的基因型为AAa或Aaa。若该三体雄蝇的基因型为AAa,则其产生的配子及其比例为AA∶a∶Aa∶A=1∶1∶2∶2,将该个体与多只黑身雌性个体(aa)杂交,后代灰身与黑身个体的比例为5∶1;若该三体雄蝇的基因型为Aaa,则其产生的配子及其比例为A∶aa∶Aa∶a=1∶1∶2∶2,将该个体与多只黑身雌性(aa)个体杂交,后代灰身与黑身个体的比例为1∶1。如果控制体色的基因不在2号染色体上,则灰身的三体雄蝇的基因型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论