呼和浩特专版2020中考数学复习方案第二单元方程组与不等式组课时训练07一元一次不等式组及其应用试题_第1页
呼和浩特专版2020中考数学复习方案第二单元方程组与不等式组课时训练07一元一次不等式组及其应用试题_第2页
呼和浩特专版2020中考数学复习方案第二单元方程组与不等式组课时训练07一元一次不等式组及其应用试题_第3页
呼和浩特专版2020中考数学复习方案第二单元方程组与不等式组课时训练07一元一次不等式组及其应用试题_第4页
呼和浩特专版2020中考数学复习方案第二单元方程组与不等式组课时训练07一元一次不等式组及其应用试题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1课时训练(七)一元一次不等式(组)及其应用(限时:35分钟)|夯实基础|1.[2019·广安]若m>n,下列不等式不一定成立的是 ()A.m+3>n+3 B.-3m<-3nC.m3>n3 D.m22.[2019·陇南]不等式2x+9≥3(x+2)的解集是 ()A.x≤3 B.x≤-3C.x≥3 D.x≥-33.[2018·益阳]不等式组2x+1<3,图K7-14.[2019·德州]不等式组5x+2>3(A.10 B.7 C.6 D.05.[2019·南充]若关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为 ()A.-5<a<-3 B.-5≤a<-3C.-5<a≤-3 D.-5≤a≤-36.[2019·聊城]若不等式组x+13<x2-1,A.m≤2 B.m<2C.m≥2 D.m>27.[2019·重庆B卷]某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为 ()A.13 B.14C.15 D.168.[2019·绵阳]红星商店计划用不超过4200元的资金购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有 ()A.3种 B.4种C.5种 D.6种9.[2019·株洲]若a为有理数,且2-a的值大于1,则a的取值范围为.

10.[2019·益阳]不等式组x-1<011.[2019·大庆]已知x=4是不等式ax-3a-1<0的解,x=2不是不等式ax-3a-1<0的解,则实数a的取值范围是.

12.[2019·包头]已知不等式组2x+9>-6x+1,13.[2019·宜宾]若关于x的不等式组x-24<x-114.[2018·山西]2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm.

15.(1)解不等式:4(x-1)-12(2)[2019·新疆]解不等式组:2x+316.若不等式组2x+3<1,x>12(x-3)17.[2019·荆州]为拓宽学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆.

(3)学校共有几种租车方案?最少租车费用是多少?|拓展提升|18.[2019·镇江]下列各数轴上表示的x的取值范围可以是不等式组x+2>a,(图K7-219.[2019·重庆B卷]若数a使关于x的不等式组x3-2≤14(x-7),6x-2a>A.-3 B.-2 C.-1 D.1

【参考答案】1.D2.A3.A4.A[解析]解不等式5x+2>3(x-1),得x>-52解不等式12x-1≤7-32x,得∴不等式组的解集为-52<x≤4∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10.故选A.5.C[解析]解不等式2x+a≤1,得:x≤1-不等式有两个正整数解,一定是1和2,根据题意得:2≤1-a2<3,解得:-5故选C.6.A[解析]解不等式x+13<x2-1,得x>8,当4m≤8时,原不等式组无解,∴m≤2,7.C[解析]设小华答对的题的个数为x题,则答错或不答的题的个数为(20-x)题,可列不等式10x-5(20-x)>120,解得x>1423,即他至少要答对的题的个数为15题.故选C8.C[解析]设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:60解得:20≤x<25,∵x为整数,∴x=20,21,22,23,24,∴该店进货方案有5种.9.a<110.x<-311.a≤-1[解析]因为x=4是不等式ax-3a-1<0的解,所以4a-3a-1<0,a<1,因为x=2不是不等式ax-3a-1<0的解,所以2a-3a-1≥0,所以a≤-1,所以a≤-1.12.k≤-2[解析]解2x+9>-6x+1得x>-1.解x-k>1得x>k+1.∵不等式组的解集为x>-1,∴k+1≤-1,解得k≤-2.13.-2≤m<1[解析]x解不等式①得:x>-2,解不等式②得:x≤m+2∴不等式组的解集为-2<x≤m+2∵不等式组只有两个整数解,∴0≤m+23<1,解得:-2≤故答案为-2≤m<1.14.55[解析]设长为8xcm,高为11xcm,由题意可得20+8x+11x≤115,解得:x≤5.∴11x≤55.15.解:(1)化简4(x-1)-12<x得4x-4-12∴3x<92,∴x<32,∴原不等式的解集为x<(2)解不等式①,得:x<2.解不等式②,得:x>1.所以,不等式组的解集为:1<x<2.在数轴上表示如图所示:16.解:解不等式组得x所以不等式组的解集为-3<x<-1,则满足条件的整数解为-2,把x=-2代入方程2x-4=ax,得-4-4=-2a,解得a=4.17.[解析](1)设参加此次研学活动的老师有x人,学生有y人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生”,即可得出关于x,y的二元一次方程组,解之即可得出结论.(2)利用租车总辆数(至少)=师生人数÷35,结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆.(3)设租35座客车m辆,则需租30座的客车(8-m)辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出租车方案数.设租车总费用为w元,根据租车总费用=400×租用35座客车的数量+320×租用30座客车的数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:14x+10=y答:参加此次研学活动的老师有16人,学生有234人.(2)8[解析]∵每辆车上至少要有2名老师,∴客车总数不超过8辆,又要保证所有师生都有车坐,∴客车总数不能小于234+1635=507(取整为8)辆,综合起来可知租车总辆数为8故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8-m)辆,依题意,得:35解得:2≤m≤512∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8-m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.18.B[解析]由x+2>a得x>a-2,A.由数轴知x>-3,则a=-1,∴-3x-6<0,解得x>-2,与数轴不符;B.由数轴知x>0,则a=2,∴3x-6<0,解得x<2,与数轴相符合;C.由数轴知x>2,则a=4,∴7x-6<0,解得x<67,与数轴不符D.由数轴知x>-2,则a=0,∴-x-6<0,解得x>-6,与数轴不符;故选B.19.A[解析]第一部分:解一元一次不等式组x解不等式①,得:x≤3,解不等式②,得:x>5+2a因为有且仅有三个整数解,所以三个整数解分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论