河南省信阳市2024-2025学年高三第二次教学质量检测数学试题_第1页
河南省信阳市2024-2025学年高三第二次教学质量检测数学试题_第2页
河南省信阳市2024-2025学年高三第二次教学质量检测数学试题_第3页
河南省信阳市2024-2025学年高三第二次教学质量检测数学试题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

★2025年1月20日2024-2025学年普通高中高三第二次教学质量检测数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B铅笔将准考证号填涂在相应位置.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.第I卷一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.已知为虚数单位,若,则()A. B.2 C. D.3.已知是夹角为的两个单位向量,若向量在向量上的投影向量为,则()A. B.2 C. D.4.若,则()A. B. C. D.5已知随机变量服从正态分布,且,则等于()A.0.14 B.0.62 C.0.72 D.0.866.函数的图象向左平移个单位长度后与函数的图象重合,则的最小值为().A.1 B.2 C.3 D.47.已知函数(且),若有最小值,则实数的取值范围是A. B. C. D.8.已知O为坐标原点,双曲线C:的左、右焦点分别是F1,F2,离心率为,点是C的右支上异于顶点的一点,过F2作的平分线的垂线,垂足是M,,若双曲线C上一点T满足,则点T到双曲线C的两条渐近线距离之和为()A B. C. D.二、选择题,本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.“体育强则中国强,国运兴则体育兴”.为备战2024年巴黎奥运会,已知运动员甲特训的成绩分别为:9,12,8,16,16,18,20,16,12,13,则这组数据的()A.众数为12 B.平均数为14 C.中位数为14.5 D.第85百分位数为1610.已知抛物线C:的焦点为F,过点的直线l与抛物线C交于A,B两点,设直线l的斜率为k,则下列选项正确的有()AB.若以线段AB为直径的圆过点F,则C.若以线段AB为直径的圆与y轴相切,则D.若以线段AB为直径的圆与x轴相切,则该圆必与抛物线C的准线相切11.已知函数和其导函数的定义域都是,若与均为偶函数,则()A.B.关于点对称C.D.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.在的展开式中,的系数为______________.13.若直线为曲线的一条切线,则的最大值为__________.14.某工厂加工一种电子零件,去年12月份生产1万个,产品合格率为87%.为提高产品合格率,工厂进行了设备更新,今年1月份的产量在去年12月份的基础上提高4%,产品合格率比去年12月份增加0.4%,计划以后两年内,每月的产量和产品合格率都按此标准增长,那么该工厂的月不合格产品个数达到最大是两年内的第________月.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在锐角中,角所对的边分别为,且的面积.(1)求角A;(2)若,求的取值范围.16.设是等差数列,是等比数列.已知,,.(1)求和的通项公式;(2)数列和项从小到大依次排列(相等项计两项)得到新数列,求的前50项的和.17.2023年9月26日,第十四届中国(合肥)国际园林博览会在合肥骆岗公园开幕.本届园博会以“生态优先,百姓园博”为主题,共设有5个省内展园、26个省外展园和7个国际展园,开园面积近3.23平方公里.游客可通过乘坐观光车、骑自行车和步行三种方式游园.(1)若游客甲计划在5个省内展园和7个国际展园中随机选择2个展园游玩,记甲参观省内展园的数量为,求的分布列及数学期望;(2)为更好地服务游客,主办方随机调查了500名首次游园且只选择一种游园方式的游客,其选择的游园方式和游园结果的统计数据如下表:游园方式游园结果观光车自行车步行参观完所有展园808040未参观完所有展园20120160用频率估计概率.若游客乙首次游园,选择上述三种游园方式的一种,求游园结束时乙能参观完所有展园的概率.18.已知函数.(1)若是函数的一个极值点,求的值;(2)若在上恒成立,求的取值范围;(3)证明:(为自然对数的底数).19.已知动点与定点距离和到定直线的距离的比为常数.其中,且,记点的轨迹为曲线.(1)求的方程,并说明轨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论