




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题28二次函数与新定义创新问题该专题是以二次函数为背景下的创新题型,这种题型往往阅读量较大,同学们在做题时,要仔细审题理解新定义,进而找到解题方法。1.定义:若抛物线与x轴有两个交点,且这两个交点与它的顶点所构成的三角形是直角三角形,则把这种抛物线称作“和美抛物线”.如图,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn)(n为正整数)依次是直线上的点,这组抛物线与x轴正半轴的交点依次是A1(a1,0),A2(a2,0),A3(a3,0),…An+1(an+1,0)(0<a1<1,n为正整数).若这组抛物线中存在和美抛物线,则a1=___.2.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.则抛物线与直线所围成的阴影部分(不包括边界)的整点个数有__________个;3.(2022·江苏苏州·统考二模)定义:若一个函数的图像上存在横、纵坐标之和为零的点,则称该点为这个函数图像的“好点”.例如,点是函数的图像的“好点”.(1)在函数①,②,③的图像上,存在“好点”的函数是________;(填序号)(2)设函数与的图像的“好点”分别为点A、B,过点A作轴,垂足为C.当为等腰三角形时,求k的值;(3)若将函数的图像在直线下方的部分沿直线翻折,翻折后的部分与图像的其余部分组成了一个新的图像.当该图像上恰有3个“好点”时,求m的值.
4.(2022·湖南株洲·株洲市景弘中学校考一模)如图1,若关于x的二次函数(a,b,c为常数且)与x轴交于两个不同的点,,与y轴交于点C,抛物线的顶点为M,O是坐标原点.(1)若①求此二次函数图象的顶点M的坐标;②定义:若点G在某一个函数的图象上,且点G的横纵坐标相等,则称点G为这个函数的“好点”.求证:二次函数有两个不同的“好点”.(2)如图2,连接,直线与x轴交于点P,满足,且的面积为,求二次函数的表达式.
5.(2022·全国·九年级专题练习)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P分别作x轴,y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则P为“美好点”.(1)在点M(2,2),N(4,4),Q(﹣6,3)中,是“美好点”的有;(2)若“美好点”P(a,﹣3)在直线y=x+b(b为常数)上,求a和b的值;(3)若“美好点”P恰好在抛物线第一象限的图象上,在x轴上是否存在一点Q使得△POQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
6.(2021·河北保定·统考二模)当抛物线(a、b、c为常数,c≠0)与x轴交于A,B两点时,以AB为边作矩形ABCD,使点C、点D落在直线y=c上,我们把这样的矩形ABCD叫做该抛物线的“相约矩形”.(1)①抛物线的“相约矩形”的周长为___________.②当抛物线(c为常数)不存在“相约矩形”,则c的取值范围是_________.(2)已知抛物线经过点(2,0),当该抛物线的“相约矩形”是正方形时,求出该抛物线所对应的函数表达式.(3)对于函数(a为常数).①当该函数的图象与x轴只有-个交点时,求出交点的坐标;②我们把平面直角坐标系中横、纵坐标都为整数的点称为“好点”,当抛物线(a为常数,a>0)的“相约矩形”内部(包括矩形边界)恰有8个“好点”时,直接写出a的取值范围.
7.(2022秋·浙江·九年级期末)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0)顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定:抛物线与x轴围成的封闭区域称为“G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax2﹣2ax﹣3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2﹣2ax﹣3a经过(1,3).①求a的值;②在①的条件下,直接写出“G区域”内整点的个数.(3)如果抛物线y=ax2﹣2ax﹣3a在“G区域”内有4个整点,直接写出a的取值范围.
8.(2022·浙江·九年级专题练习)已知二次函数交轴于点A,B(点A在点B左侧),交轴于点,设抛物线的对称轴为直线,且≥.(1)用含的代数式表示出点A、点B的坐标;(2)若抛物线上存在点P使得(点P与点C不重合),且这样的点P恰好存在两个,求此时抛物线的解析式;(3)我们将平面直角坐标系中横坐标、纵坐标都为整数的点叫做整点.当点A、点B都在轴正半轴上,且内部存在2个整点(不包括边),试写出1个符合题意的实数的值,并直接写出的取值规律.
9.(2020·湖北黄冈·九年级统考自主招生)如图,抛物线,经过点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第一象限,当时,求N点的坐标;(3)我们通常用表示整数的最大公约数,例如.若,则称a、b互素,关于最大公约数有几个简单的性质:①,其中k为任意整数;②;若点满足:a,b均为正整数,且,则称Q点为“互素正整点”,当时,该抛物线上有多少个“互素正整点”?
10.(2023秋·湖北武汉·九年级武汉市粮道街中学校考期末)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线:与抛物线:为“友好抛物线”.(1)求抛物线的解析式;(2)点是抛物线上在第一象限的动点,过作轴,为垂足,求的最大值;(3)设抛物线的顶点为,点的坐标为,问在的对称轴上是否存在点,使线段绕点逆时针旋转得到线段,且点恰好落在抛物线上?若存在,求出点的坐标;若不存在,说明理由.
11.(2022秋·九年级课时练习)【概念感知】我们把两个二次项系数之和为1,对称轴相间,且图象与y轴交点也相同的二次函数称为“友好对称二次函数”,例如:的“友好对称二次函数”为.【特例求解】(1)的“友好对称二次函数”为______________;的“友好对称二次函数”为____________.【性质探究】(2)关于“友好对称二次函数”,下列结论正确的是___________(填入正确的序号)①二次项系数为1的二次函数没有“友好对称二次函数”;②二次项系为的二次函数的“友好对称二次函数”是它本身;③的“友好对称二次函数”为.④任意两个“友好对称二次函数”与y轴一定有交点,与x轴至少有一个二次函数有交点.【拓屐应用】(3)如图,二次函数与其“友好对称二次函数”都与y轴交于点A,点B,C分别在,上,点B,C的横坐标均为,它们关于的对称轴的称点分别力,,连接,,,.①若,且四边形为正方形,求m的值;②若,且四边形邻边之比为,直接写出a的值.
12.(2021·山东威海·统考二模)【信息提取】新定义:在平面直角坐标系中,如果两条抛物线关于坐标原点对称,则一条抛物线叫另一条抛物线的“友好抛物线”.新知识:对于直线和.若,则直线与互相垂直;若直线与互相垂直,则.【感知理解】(1)若抛物线的“友好抛物线”为.则h,k的值分别是;(2)若抛物线与互为“友好抛物线”.则b与n的数量关系为,c与q的数量关系为.【综合应用】(3)如图,抛物线的顶点为E,的“友好抛物线”的顶点为F,过点O的直线与抛物线交于点A,B(点A在B的左侧),与抛物线交于点C,D(点C在D的左侧).若四边形AFDE为菱形,求AB的长;
13.(2022春·九年级单元测试)抛物线:与直线:交于、两点,且.(1)求和的值(用含的代数式表示);(2)当时,抛物线与轴的另一个交点为.求的面积;当时,则的取值范围是______.(3)抛物线:的顶点,求出与的函数关系式;当为何值时,点达到最高.(4)在抛物线和直线所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当时,直接写出“美点”的个数______;若这些美点平均分布在直线的两侧,的取值范围:______.
14.(2022·江苏·九年级专题练习)数学来源于生活,数学之美无处不在,在几何图形中,最美的角是45°,最美的直角三角形是等腰直角三角形,我们把45°的角称为一中美角,最美的等腰直角三角形称为一中美三角.根据该约定,完成下列问题:(1)如图1,已知正方形ABCD中O是对角线AC上一动点,过O作OP⊥OD,垂足为O,交BC边于P,△POD是否为一中美三角,并说明理由;(2)如图2,在平面直角坐标系中,点A(﹣2,0),点B(0,2),点P在第二象限内,且在直线y=﹣2x﹣2上,若△ABP恰好构成一中美三角,求出此时P点的坐标;(3)如图3,若二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,P为第二象限上的点,在直线AC上,且∠OPB恰好构成一中美角;Q为x轴上方抛物线上的一动点,令Q点横坐标为m(0<m<3),当m为何值时,△PBQ的面积最大,求出此时Q点坐标和最大面积.
15.(2021春·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校联考期末)在平面直角坐标系中,我们把横坐标与纵坐标相等的点(a,a)叫做“至善点”,显然,这样的“至善点”有无数个,两个“至善点”(x1,x1),(x2,x2)之间的距离d=,叫做“至美距离”.(1)求函数y=x2﹣2x+2的图象的“至善点”,并求出“至美距离”;(2)求函数y=x2+mx﹣m上两个“至善点”之间的“至美距离”的最小值;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“至善点”A(x1,x1)、B(x2,x2),且满足﹣2≤x1≤2,且A、B两点之间的“至美距离”为2,求代数式b2﹣2b+5的取值范围.
16.(2022·北京西城·九年级期中)对于平面直角坐标系中第一象限内的点和图形,给出如下定义:过点作轴和轴的垂线,垂足分别为M,N,若图形中的任意一点满足且,则称四边形是图形的一个覆盖,点为这个覆盖的一个特征点.例:已知,,则点为线段的一个覆盖的特征点.(1)已知:,,点,①在,,中,是的覆盖特征点的为___________;②若在一次函数的图像上存在的覆盖的特征点,求的取值范围.(2)以点D(3,4)为圆心,半径为作圆,在抛物线上存在⊙的覆盖的特征点,直接写出的取值范围__________________.
17.(2022·江苏盐城·三模)我们规定:关于x的反比例函数称为一次函数的“次生函数”,关于x的二次函数称为一次函数的“再生函数”.(1)按此规定:一次函数的“次生函数”为:___________,“再生函数”为:___________;(2)若关于x的一次函数的“再生函数”的顶点在x轴上,求顶点坐标;(3)若一次函数与其“次生函数”交于点、两点,其“再生函数”与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.①若点,求的正切值;②若点E在直线上,且在x轴的下方,当时,求点E的坐标.
18.(2021·湖北武汉·九年级期中)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:的“同轴对称抛物线”为.(1)请写出抛物线的顶点坐标;及其“同轴对称抛物线”的顶点坐标;写出抛物线的“同轴对称抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接、、、,设四边形的面积为.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,请求出a的取值范围.
19.(2021·河北·统考中考真题)下图是某同学正在设计的一动画示意图,轴上依次有,,三个点,且,在上方有五个台阶(各拐角均为),每个台阶的高、宽分别是1和1.5,台阶到轴距离.从点处向右上方沿抛物线:发出一个带光的点.(1)求点的横坐标,且在图中补画出轴,并直接指出点会落在哪个台阶上;(2)当点落到台阶上后立即弹起,又形成了另一条与形状相同的抛物线,且最大高度为11,求的解析式,并说明其对称轴是否与台阶有交点;(3)在轴上从左到右有两点,,且,从点向上作轴,且.在沿轴左右平移时,必须保证(2)中沿抛物线下落的点能落在边(包括端点)上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年餐饮行业劳动合同样本
- 如何进行年度财务总结计划
- 2025医疗设备采购合同范本
- 生物教学中学生自主学习的激励计划
- 制定高效团队管理的工作总结计划
- 《2025年挖掘机租赁合同》
- 利用社区资源丰富班级活动计划
- 工业自动化设备用户培训手册
- 广西河池市凤山县2023-2024学年十校联考最后数学试题含解析
- 广西陆川县联考2023-2024学年中考冲刺卷数学试题含解析
- 文体中心项目可行性研究报告
- 三国群英传2-所有武将属性
- 氢气储存和运输 课件全套 第1-5章 氢气存储与运输概述- 材料基固态储运氢
- 幼儿园大班语言《骑着恐龙去上学》课件
- 正弦交流电的产生(公开课)课件
- 智慧双碳管理云平台建设方案
- 单基因遗传病的分子生物学检验-医学院课件
- 公务摄影拍摄技巧分享课件
- 2023持续炎症-免疫抑制-分解代谢综合征(PICS)
- 华东师范大学 PPT 37
- 人教版《小数的初步认识》
评论
0/150
提交评论