![中考数学二轮复习讲练测题型九 二次函数综合题 类型八 二次函数与平行四边形有关的问题(专题训练)(解析版)_第1页](http://file4.renrendoc.com/view10/M02/05/25/wKhkGWev4ouAEpYkAAGU_GkU6Eg521.jpg)
![中考数学二轮复习讲练测题型九 二次函数综合题 类型八 二次函数与平行四边形有关的问题(专题训练)(解析版)_第2页](http://file4.renrendoc.com/view10/M02/05/25/wKhkGWev4ouAEpYkAAGU_GkU6Eg5212.jpg)
![中考数学二轮复习讲练测题型九 二次函数综合题 类型八 二次函数与平行四边形有关的问题(专题训练)(解析版)_第3页](http://file4.renrendoc.com/view10/M02/05/25/wKhkGWev4ouAEpYkAAGU_GkU6Eg5213.jpg)
![中考数学二轮复习讲练测题型九 二次函数综合题 类型八 二次函数与平行四边形有关的问题(专题训练)(解析版)_第4页](http://file4.renrendoc.com/view10/M02/05/25/wKhkGWev4ouAEpYkAAGU_GkU6Eg5214.jpg)
![中考数学二轮复习讲练测题型九 二次函数综合题 类型八 二次函数与平行四边形有关的问题(专题训练)(解析版)_第5页](http://file4.renrendoc.com/view10/M02/05/25/wKhkGWev4ouAEpYkAAGU_GkU6Eg5215.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型九二次函数综合题类型八二次函数与平行四边形有关的问题(专题训练)1.(2021·四川南充市·中考真题)如图,已知抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ.当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由.(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且.在y轴上是否存在点F,使得为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1);(2)四边形OCPQ是平行四边形,理由见详解;(3)(0,)或(0,1)或(0,-1)【分析】(1)设抛物线,根据待定系数法,即可求解;(2)先求出直线BC的解析式为:y=-x+4,设P(x,-x+4),则Q(x,),(0≤x≤4),得到PQ=,从而求出线段PQ长度最大值,进而即可得到结论;(3)过点Q作QM⊥y轴,过点Q作QN∥y轴,过点E作EN∥x轴,交于点N,推出,从而得,进而求出E(5,4),设F(0,y),分三种情况讨论,即可求解.【详解】解:(1)∵抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线,∴B(4,0),C(0,4),设抛物线,把C(0,4)代入得:,解得:a=1,∴抛物线的解析式为:;(2)∵B(4,0),C(0,4),∴直线BC的解析式为:y=-x+4,设P(x,-x+4),则Q(x,),(0≤x≤4),∴PQ=-x+4-()==,∴当x=2时,线段PQ长度最大=4,∴此时,PQ=CO,又∵PQ∥CO,∴四边形OCPQ是平行四边形;(3)过点Q作QM⊥y轴,过点Q作QN∥y轴,过点E作EN∥x轴,交于点N,由(2)得:Q(2,-2),∵D是OC的中点,∴D(0,2),∵QN∥y轴,∴,又∵,∴,∴,∴,即:,设E(x,),则,解得:,(舍去),∴E(5,4),设F(0,y),则,,,①当BF=EF时,,解得:,②当BF=BE时,,解得:或,③当EF=BE时,,无解,综上所述:点F的坐标为:(0,)或(0,1)或(0,-1)..【点睛】本题主要考查二次函数与平面几何的综合,掌握二次函数的性质以及图像上点的坐标特征,添加辅助线,构造直角三角形,是解题的关键.2.(2021·重庆中考真题)如图,在平面直角坐标系中,抛物线与x轴交于点,,与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求面积的最大值;(3)在(2)的条件下,将抛物线沿射线AD平移个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,在上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.【答案】(1)y=x2-3x-4;(2)8;(3)或或,过程见解析【分析】(1)将,的坐标代入函数式利用待定系数法求解即可;(2)先得出抛物线的对称轴,作PE∥y轴交直线AD于E,设P(m,m2-3m-4),用m表示出△APD的面积即可求出最大面积;
(3)通过平移距离为,转化为向右平移4个单位,再向下平移4个单位,根据平移变化得出平移后的抛物线关系式和E的坐标,分DE为对角线、EG为对角线、EF为对角线三种情况进行讨论即可.【详解】解:(1)将A(-1,0),B(4,0)代入y=ax2+bx-4得,解得:,∴该抛物线的解析式为y=x2-3x-4,(2)把x=0代入y=x2-3x-4中得:y=-4,
∴C(0,-4),抛物线y=x2-3x-4的对称轴l为
∵点D与点C关于直线l对称,
∴D(3,-4),
∵A(-1,0),设直线AD的解析式为y=kx+b;
∴,解得:,∴直线AD的函数关系式为:y=-x-1,
设P(m,m2-3m-4),
作PE∥y轴交直线AD于E,
∴E(m,-m-1),
∴PE=-m-1-(m2-3m-4)=-m2+2m+3,∴,∴,∴当m=1时,的面积最大,最大值为:8(3)∵直线AD的函数关系式为:y=-x-1,∴直线AD与x轴正方向夹角为45°,∴抛物线沿射线AD方向平移平移个单位,相当于将抛物线向右平移4个单位,再向下平移4个单位,∵,,平移后的坐标分别为(3,-4),(8,-4),
设平移后的抛物线的解析式为则,解得:,∴平移后y1=x2-11x+20,∴抛物线y1的对称轴为:,∵P(1,-6),
∴E(5,-10),∵以点D,E,F,G为顶点的四边形是平行四边形,分三种情况:设G(n,n2-11n+20),F(,y),①当DE为对角线时,平行四边形的对角线互相平分∴,∴∴②当EF为对角线时,平行四边形的对角线互相平分∴,∴∴③当EG为对角线时,平行四边形的对角线互相平分∴,∴∴∴或或【点睛】本题是二次函数综合题,考查了待定系数法求函数关系式和最值问题,求三角形的面积,以及平移的性质和平行四边形的性质,注意分类讨论的数学思想.3.(2022·四川眉山)在平面直角坐标系中,抛物线与轴交于点,(点在点的左侧),与轴交于点,且点的坐标为.(1)求点的坐标;(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】(1)(2)最大为(3)存在,的坐标为或(3,-16)或【分析】(1)把点A的坐标代入,求出c的值即可;(2)过作于点,过点作轴交于点,证明是等腰直角三角形,得,当最大时,最大,,运用待定系数法求直线解析式为,设,,则,求得PH,再根据二次函数的性质求解即可;(3)分①当AC为平行四边形ANMC的边,②当AC为平行四边形AMNC的边,③当AC为对角线三种情况讨论求解即可.(1)(1)∵点在抛物线的图象上,∴∴,∴点的坐标为;(2)过作于点,过点作轴交于点,如图:∵,∴,∴是等腰直角三角形,∴,∵轴,∴,∴是等腰直角三角形,∴,∴当最大时,最大,设直线解析式为,将代入得,∴,∴直线解析式为,设,,则,∴,∵,∴当时,最大为,∴此时最大为,即点到直线的距离值最大;(3)存在.∵∴抛物线的对称轴为直线,设点N的坐标为(-2,m),点M的坐标为(x,)分三种情况:①当AC为平行四边形ANMC的边时,如图,∵A(-5,0),C(0,5),∴,即解得,x=3.∴∴点M的坐标为(3,-16)②当AC为平行四边形AMNC的边长时,如图,方法同①可得,,∴∴点M的坐标为(-7,-16);③当AC为对角线时,如图,∵A(-5,0),C(0,5),∴线段AC的中点H的坐标为,即H()∴,解得,。∴∴点M的坐标为(-3,8)综上,点的坐标为:或(3,-16)或.【点睛】本题是二次函数综合题,其中涉及到二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的性质,平行四边形的判定与性质.熟知几何图形的性质利用数形结合是解题的关键.4.(2021·重庆中考真题)如图,在平面直角坐标系中,抛物线经过A(0,﹣1),B(4,1).直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.(1)求抛物线的函数表达式;(2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;(3)把抛物线平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.【答案】(1);(2)t=2时,△PDE周长取得最大值,最大值为,点P的坐标为(2,﹣4);(3)满足条件的点M的坐标有(2,﹣4),(6,12),(﹣2,12),过程见解析【分析】(1)利用待定系数法求函数表达式即可;(2)先求出直线AB的函数表达式和点C坐标,设P,其中0<t<4,则E,证明△PDE∽△AOC,根据周长之比等于相似比可得,根据二次函数求最值的方法求解即可;(3)分以下情况①若AB是平行四边形的对角线;②若AB是平行四边形的边,1)当MN∥AB时;2)当NM∥AB时,利用平行四边形的性质分别进行求解即可.【详解】解(1)∵抛物线经过点A(0,﹣1),点B(4,1),∴,解得,∴该抛物线的函数表达式为;(2)∵A(0,-1),B(4,1),∴直线AB的函数表达式为,∴C(2,0),设P,其中0<t<4,∵点E在直线上,PE∥x轴,∴E,∠OCA=∠DEP,∴PE=,∵PD⊥AB,∴∠EDP=∠COA,∴△PDE∽△AOC,∵AO=1,OC=2,∴AC=,∴△AOC的周长为3+,令△PDE的周长为l,则,∴,∴当t=2时,△PDE周长取得最大值,最大值为,此时点P的坐标为(2,﹣4),(3)如图所示,满足条件的点M的坐标有(2,﹣4),(6,12),(﹣2,12).由题意可知,平移后抛物线的函数表达式为,对称轴为直线.①若AB是平行四边形的对角线,当MN与AB互相平分时,四边形ANBM是平行四边形,即MN经过AB的中点C(2,0),∵点N的横坐标为2,∴点M的横坐标为2,∴点M的坐标为(2,-4);②若AB是平行四边形的边,1)MN∥AB时,四边形ABNM是平行四边形,∵A(0,-1),B(4,1),点N的横坐标为2,∴点M的横坐标为2﹣4=﹣2,∴点M的坐标为(﹣2,12);2)当NM∥AB时,四边形ABMN是平行四边形,∵A(0,-1),B(4,1),点N的横坐标为2,∴点M的横坐标为2+4=6,∴点M的坐标为(6,12),综上,满足条件的点M的坐标有(2,﹣4),(6,12),(﹣2,12).【点睛】本题考查待定系数法求函数的表达式、相似三角形的判定与性质、求二次函数的最值、平行四边形的性质等知识,解答的关键是熟练掌握二次函数的性质,运用平行四边形的性质,结合数形结合和分类讨论的思想方法进行探究、推导和计算.5.(2021·湖北中考真题)抛物线交轴于,两点(在的左边).(1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上.①如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;②如图(2),若点在抛物线上,且的面积是12,求点的坐标;(2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值.【答案】(1)①,;②点的坐标是.(2)见解析【分析】(1)①根据函数图象与x轴的交点,令y=0,求出,点E在抛物线上,求出纵坐标为,再根据平行四边形的性质,求出;②连,过点作轴垂线,垂足为,过点作,垂足为,设点坐标为,点坐标为,根据平行四边形的性质,与点在抛物线上,得到,再由则,列出方程求解;(2)方法一:先求出G、H两点的横坐标,再利用求解即可;方法二:先用待定系数法求出直线与直线l的表达式,根据直线l与抛物线有唯一的交点,求出点坐标为,点坐标为,再求出结果.【详解】(1)解:①∵抛物线交轴于,两点(在的左边),∴令=0,解得:,,∴,∵点E在抛物线上,点的横坐标是,∴,∵四边形ACDE是平行四边形,∴∴;②设点坐标为,点坐标为.∵四边形是平行四边形,∴将沿平移可与重合,点坐标为.∵点在抛物线上,∴.解得,,所以.连,过点作轴垂线,垂足为,过点作,垂足为.则,∵,,∴.∴,解得,(不合题意,舍去).∴点的坐标是.(2)方法一:证明:依题意,得,,∴设直线解析式为,则,解得.∴直线的解析式为.同理,直线的解析式为.设直线的解析式为.联立,消去得.∵直线与抛物线只有一个公共点,∴,.联立,且,解得,,同理,得.∵,两点关于轴对称,∴.∴.∴的值为.方法二:证明:同方法一得直线的解析式为.设直线的解析式为,与抛物线唯一公共点为.联立,消去得,∴.解得.∴直线的解析式为.联立,且,解得.∴点坐标为.同理,点坐标为.∵,∴.∴的值为.【点睛】本题是二次函数综合题,主要考查二次函数、一次函数、三角形面积、方程组等知识点,解题的关键是学会利用参数,学会用方程组求两个函数图象的交点坐标,学会把问题转化为方程解决,属于压轴题.6.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.【答案】(1);(2)存在,或或或【分析】(1)令,解得,可得函数必过,再结合必过得出,,即可得到,再根据,可看成二次函数与一次函数仅有一个交点,且整体位于的上方,可得,有两个相等的实数根,再根据,可解得的值,即可求出二次函数解析式.(2)结合(1)求出点C的坐标,设,①当为对角线时,②当为对角线时,③当为对角线时,根据中点坐标公式分别列出方程组,解方程组即可得到答案.【详解】解:(1)令,解得,当时,,∴必过,又∵必过,∴,∴,即,即可看成二次函数与一次函数仅有一个交点,且整体位于的上方∴,有两个相等的实数根∴,∴,∴,∴,,∴.(2)由(1)可知:,,设,①当为对角线时,∴,解得(舍),,∴,即.②当为对角线时,∴,解得(舍),∴,即.③当为对角线时,∴,解得,∴或,∴.综上所述:N点坐标为或或或.【点睛】本题主要考查了二次函数的综合应用,涉及到二次函数与不等式组,考查了平行四边形的存在性问题,利用中点公式,分类讨论是解题关键.7.(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,,.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.【答案】(1);(2)(,);(3)(,)或(,)或(,)【分析】(1)根据OB=OC=3OA,AC=,利用勾股定理求出OA,可得OB和OC,得到A,B,C的坐标,利用待定系数法求出抛物线的解析式;(2)判断出四边形BACP的面积最大时,△BPC的最大面积,过点P作y轴的平行线交BC于点H,求出直线BC的表达式,设点P(x,-x2-2x+3),利用三角形面积公式S△BPC=,即可求出S△BPC面积最小时点P的坐标;(3)分类讨论,一是当BP为平行四边形对角线时,二是当BP为平行四边形一边时,利用平移规律即可求出点Q的坐标.【详解】解:(1)∵OB=OC=3OA,AC=,∴,即,解得:OA=1,OC=OB=3,∴A(1,0),B(-3,0),C(0,3),代入中,则,解得:,∴抛物线的解析式为;(2)如图,四边形PBAC的面积=△BCA的面积+△PBC的面积,而△ABC的面积是定值,故四边形PBAC的面积最大,只需要△BPC的最大面积即可,过点P作y轴的平行线交BC于点H,∵B(-3,0),C(0,3),设直线BC的表达式为y=mx+n,则,解得:,∴直线BC的表达式为y=x+3,设点P(x,-x2-2x+3),则点H(x,x+3),S△BPC===,∵,故S有最大值,即四边形PBAC的面积有最大值,此时x=,代入得,∴P(,);(3)若BP为平行四边形的对角线,则PQ∥BM,PQ=BM,则P、Q关于直线x=-1对称,∴Q(,);若BP为平行四边形的边,如图,QP∥BM,QP=BM,同上可得:Q(,);如图,BQ∥PM,BQ=PM,∵点Q的纵坐标为,代入中,解得:或(舍),∴点Q的坐标为(,);如图,BP∥QM,BP=QM,∵点Q的纵坐标为,代入中,解得:(舍)或,∴点Q的坐标为(,);综上:点Q的坐标为(,)或(,)或(,).【点睛】本题是二次函数综合题,考查了二次函数的有关性质、一次函数的性质、平行四边形的性质,熟练掌握二次函数的性质是解题的关键.8.(2021·湖南中考真题)将抛物线向左平移1个单位,再向上平移4个单位后,得到抛物线.抛物线与轴交于点,,与轴交于点.已知,点是抛物线上的一个动点.
(1)求抛物线的表达式;(2)如图1,点在线段上方的抛物线上运动(不与,重合),过点作,垂足为,交于点.作,垂足为,求的面积的最大值;(3)如图2,点是抛物线的对称轴上的一个动点,在抛物线上,是否存在点,使得以点,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由.【答案】(1);(2)的面积最大值为;(3)点的坐标为或或.【分析】(1)由题意易得平移后的抛物线的表达式为,然后把点A的坐标代入求解即可;(2)由(1)及题意易得,则有△AOC是等腰直角三角形,∠CAO=∠ACO=45°,进而可得直线AC的解析式为,设点,则,然后可得△AED和△PEF都为等腰直角三角形,过点F作FT⊥PD于点,则有,由三角形面积公式可得,要使面积最大则PE的值为最大即可,最后问题可求解;(3)由题意可知当以点A、P、C、Q为顶点的四边形是平行四边形时,则可分①当以AC为平行四边形的边时,②当以AC为平行四边形的对角线时,然后利用等腰直角三角形、平行四边形的性质及中点坐标公式分类进行求解即可.【详解】解:(1)由题意得:平移后的抛物线的表达式为,则把点代入得:,解得:,∴抛物线的表达式为,即为;(2)由(1)可得抛物线的表达式为,则有,∴,∴△AOC是等腰直角三角形,∴∠CAO=∠ACO=45°,∵,∴∠AED=∠CAO=45°,∴∠AED=∠PEF=45°,∵,∴△PEF是等腰直角三角形,过点F作FT⊥PD于点,如图所示:
∴,∴,∴要使面积最大则PE的值为最大即可,设直线AC的解析式为,代入点A、C的坐标得:,解得:,∴直线AC的解析式为,设点,则,∴,∵-1<0,开口向下,∴当时,PE有最大值,即为,∴△PEF面积的最大值为;(3)存在以点A、P、C、Q为顶点的四边形是平行四边形,理由如下:由(2)可得,,∠CAO=∠ACO=45°,抛物线的对称轴为直线,∴,∠CAO=∠ADQ=45°,①当以AC为平行四边形的边时,如图所示:
过点P作PG⊥l于点G,∵四边形APQC是平行四边形,∴,AC∥PQ,∴∠ADQ=∠PQG=45°,∴△PQG是等腰直角三角形,∴,∴点P的横坐标为-4,∴;②当以AC为平行四边形的边时,如图所示:
同理①可得点P的横坐标为2,∴;③当以AC为平行四边形的对角线时,如图所示:
∵四边形AQCP是平行四边形,∴,设点,∴由中点坐标公式可得:,∴,∴;综上所述:当以点A、P、C、Q为顶点的四边形是平行四边形,点的坐标为或或.【点睛】本题主要考查平行四边形的性质、二次函数的综合及等腰直角三角形的性质与判定,熟练掌握平行四边形的性质、二次函数的综合及等腰直角三角形的性质与判定是解题的关键.9.(2021·海南中考真题)已知抛物线与x轴交于两点,与y轴交于C点,且点A的坐标为、点C的坐标为.
(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P,求的面积;(3)如图2,有两动点在的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线按方向向终点B运动,点E沿线段按方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:①当t为何值时,的面积等于;②在点运动过程中,该抛物线上存在点F,使得依次连接得到的四边形是平行四边形,请直接写出所有符合条件的点F的坐标.【答案】(1);(2)的面积为;(3)①当或时,;②点F的坐标为或.【分析】(1)直接将两点坐标代入解析式中求出a和c的值即可;(2)先求出顶点和B点坐标,再利用割补法,将所求三角形面积转化为与其相关的图形的面积的和差关系即可,如图,;(3)①先求出BC的长和E点坐标,再分两种情况讨论,当点D在线段上运动时的情况和当点D在线段上运动情况,利用面积已知得到关于t的一元二次方程,解t即可;②分别讨论当点D在线段上运动时的情况和当点D在线段上的情况,利用平行四边形的性质和平移的知识表示出F点的坐标,再代入抛物线解析式中计算即可.【详解】(1)∵抛物线经过两点,解得该地物线的函数表达式为(2)∵抛物线,∴抛物线的顶点P的坐标为.,令,解得:,点的坐标为.如图4-1,连接,则的面积为.(3)①∵在中,.当动点E运动到终点C时,另一个动点D也停止运动.,∴在中,.当运动时间为t秒时,,如图4-2,过点E作轴,垂足为N,则...∴点E的坐标为.下面分两种情形讨论:i.当点D在线段上运动时,.此时,点D的坐标为.当时,.解得(舍去),..ii.如图4-3,当点D在线段上运动时,,..当时,解得.又,.综上所述,当或时,②如图4-4,当点D在线段上运动时,;∵,当四边形ADFE为平行四边形时,AE可通过平移得到EF,∵A到D横坐标加1,纵坐标加,∴,∴,化简得:,∴,∴,∴;如图4-5,当点D在线段上运动时,AE可通过平移得到EF,∵,∵A到D横坐标加,纵坐标不变,∴,∴∴,因为,∴,∴,综上可得,F点的坐标为或.【点睛】本题综合考查了抛物线的图像与性质、相似三角形的判定与性质、已知顶点坐标求三角形面积、平行四边形的判定与性质、平移的性质、勾股定理等内容,解决本题的关键是牢记相关概念与公式,本题对学生的综合思维能力、分析能力以及对学生的计算能力都要求较高,考查了学生利用平面直角坐标系解决问题的能力,本题蕴含了数形结合与分类讨论的思想方法等.10.(2020•齐齐哈尔)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图求抛物线的解析式;(2)直线AB的函数解析式为,点M的坐标为),cos∠ABO=;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为;(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=13AC或(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;(4)分AC是边、AC是对角线两种情况,分别求解即可.【解析】(1)将点A、C的坐标代入抛物线表达式得:12×16−4b+c=01故直线AB的表达式为:y=12x(2)点A(﹣4,0),OB=OA=4,故点B(0,4),由点A、B的坐标得,直线AB的表达式为:y=x+4;则∠ABO=45°,故cos∠ABO=2对于y=12xOP将△AOC的面积分成1:2的两部分,则AP=13AC或则yPyC=1故点P(﹣2,2)或(0,4);故答案为:y=x+4;(﹣2,﹣2);22(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,点A′(4,0),设直线A′M的表达式为:y=kx+b,则4k+b=0−2k+b=−2,解得k=故直线A′M的表达式为:y=13x令x=0,则y=−43,故点Q(0,(4)存在,理由:设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),①当AC是边时,点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),即0±6=m,0±6=n,解得:m=n=±6,故点N(6,6)或(﹣6,﹣6);②当AC是对角线时,由中点公式得:﹣4+2=m+0,6+0=n+0,解得:m=﹣2,n=6,故点N(﹣2,6);综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).11.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.【分析】(1)抛物线的对称轴为x=2,即12(2)求出点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,而四边形PBCQ为平行四边形,则PQ=BC=2,故x2﹣x1=2,即可求解.【解析】(1)直线与抛物线的对称轴交于点D(2,﹣3),故抛物线的对称轴为x=2,即12故抛物线的表达式为:y=x2﹣4x;(2)把y=﹣3代入y=x2﹣4x并解得x=1或3,故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,∵四边形PBCQ为平行四边形,∴PQ=BC=2,故x2﹣x1=2,又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,故|(x12﹣4x1)﹣(x22﹣4x2)=2,|x1+x2﹣4|=1.∴x1+x2=5或x1+x2=﹣3,由x2−x由x2−x12.(2020•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−2,0),直线BC的解析式为y=−(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+2)(x﹣32)=ax2﹣22a﹣6a,即﹣6a=2,解得:a=(2)四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.【解析】(1)直线BC的解析式为y=−23x+2,令y=0,则x=3故点B、C的坐标分别为(32,0)、(0,2);则y=ax2+bx+2=a(x+2)(x﹣32)=a(x2﹣22x﹣6)=ax2﹣22即﹣6a=2,解得:a=1故抛物线的表达式为:y=−13x2+2(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,∵AD∥BC,则设直线AD的表达式为:y=−23(x+2联立①②并解得:x=42,故点D(42,−10由点C、D的坐标得,直线CD的表达式为:y=−2当x=32时,yBC=−23x+2=﹣2,即点H(3设点E(x,−13x2+2则四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12×(xD﹣xC)×BH=12×(−13x2+22∵−22<0,故S有最大值,当x=322时,S的最大值为(3)存在,理由:y=−13x2+223x+2=−13(x−2则新抛物线的表达式为:y=−13x2点A、E的坐标分别为(−2,0)、(322,52);设点M(2,m),点N(n,s),s=−①当AE是平行四边形的边时,点A向右平移522个单位向上平移52个单位得到E,同样点M(N)向右平移5即2±52则s=−13n2+8故点N的坐标为(722,−112)或(②当AE是平行四边形的对角线时,由中点公式得:−2+322s=−13n2故点N的坐标(−22,综上点N的坐标为:(722,−112)或(−32213.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,BCAC【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF=b24,再判断出△(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出ANAM=FNCM=AFAC=BCDN=94,FN=9【解析】(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得−4−2b+c=1c=1∴b=−2c=1∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(b2,c+∴DF=DE﹣EF=c+b24∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴b2即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴ANAM∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴−m−1−m∴m=−5∴点A的纵坐标为﹣(−52)2﹣2×(−5∵AM∥x轴,∴点M的坐标为(0,c−54),N(﹣1,c∴CM=c﹣(c−54)∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c−54)∵DF=OC=c,∴FN=DN﹣DF=9∵FNCM∴94∴c=3∴c−5∴点A纵坐标为14∴A(−52,∴存在这样的点A,使四边形AOBD是平行四边形.14.(2020•黔东南州)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【解析】(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC=10设点E(0,m),则AE=m∵△ACE是等腰三角形,∴①当AC=AE时,10=∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(0,3),②当AC=CE时,10=∴m=﹣3±10,∴E(0,﹣3+10)或(0,﹣3−③当AE=CE时,m2∴m=−4∴E(0,−4即满足条件的点E的坐标为(0,3)、(0,﹣3+10)、(0,﹣3−10)、(0,(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=1+22或t=1﹣22,∴Q(1+22,4)或(1﹣22,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为(1+22)﹣2=﹣1+22或(1﹣22)﹣2=﹣1﹣22,即P(﹣1+22,0)、Q(1+22,4)或P(﹣1﹣22,0)、Q(1﹣22,4).15.(2020•遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S△ABD=1(3)分两种情况讨论,利用平行四边形的性质可求解.【解析】(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN解析式为:y=kx+b,由题意可得:0=k+b2=2k+b解得:k=2b=−2∴直线AN解析式为:y=2x﹣2,联立方程组得:y=2x−2y=2x解得:x1=1y∴点D(4,6),∴S△ABD=1设点E(m,2m﹣2),∵直线BE将△ABD的面积分为1:2两部分,∴S△ABE=13S△ABD=2或S△ABE=23∴12×2×(2m﹣2)=2或∴m=2或3,∴点E(2,2)或(3,4);(3)若AD为平行四边形的边,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD=PQ,∴xD﹣xA=xP﹣xQ或xD﹣xA=xQ﹣xP,∴xP=4﹣1+2=5或xP=2﹣4+1=﹣1,∴点P坐标为(5,16)或(﹣1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴xA∴xP=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.16.(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).(1)求抛物线的解析式;(2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)求出AB,OA,AC,利用相似三角形的性质求解即可.(3)分两种情形:①PA为平行四边形的边时,点M的横坐标可以为±2,求出点M的坐标即可解决问题.②当AP为平行四边形的对角线时,点M″的横坐标为﹣4,求出点M″的坐标即可解决问题.【解析】(1)由题意抛物线经过B(0,3),C(1,0),∴c=3−1+b+c=0解得b=−2c=3∴抛物线的解析式为y=﹣x2﹣2x+3(2)对于抛物线y=﹣x2﹣2x+3,令y=0,解得x=﹣3或1,∴A(﹣3,0),∵B(0,3),C(1,0),∴OA=OB=3OC=1,AB=32,∵∠APO=∠ACB,∠PAO=∠CAB,∴△PAO∽△CAB,∴APAC∴AP4∴AP=22.(3)由(2)可知,P(﹣1,2),AP=22,①当AP为平行四边形的边时,点N的横坐标为2或﹣2,∴N(﹣2,3),N′(2,﹣5),②当AP为平行四边形的对角线时,点N″的横坐标为﹣4,∴N″(﹣4,﹣5),综上所述,满足条件的点N的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).17.(2020•聊城)如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=154,设点P的横坐标为t,则P的坐标为:(t,﹣t(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则PFCE【解析】(1)将点A(﹣1,0),B(4,0),代入y═ax2+bx+4,得:0=a−b+40=16a+4b+4解得:a=−1b=3∴二次函数的表达式为:y=﹣x2+3x+4,当x=0时,y=4,∴C(0,4),设BC所在直线的表达式为:y=mx+n,将C(0,4)、B(4,0)代入y=mx+n,得:4=n0=4m+n解得:m=−1n=4∴BC所在直线的表达式为:y=﹣x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=﹣x2+3x+4=﹣(x−32)2∴点D的坐标为:(32,25将x=32代入y=﹣x+4,即y=−3∴点E的坐标为:(32,5∴DE=25设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,由DE=PF得:﹣t2+4t=15解得:t1=32(不合题意舍去),t2当t=52时,﹣t2+3t+4=﹣(52)2+3×∴点P的坐标为(52,21(3)存在,理由如下:如图2所示:由(2)得:PF∥DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∽△CDE,∴PFCE∵C(0,4)、E(32,5∴CE=(由(2)得:DE=154,PF=﹣t∴CF=t∴−t∵t≠0,∴154解得:t=16当t=165时,﹣t2+3t+4=﹣(165)2+3×∴点P的坐标为:(165,8418.(2020•常德)如图,已知抛物线y=ax2过点A(﹣3,94(1)求抛物线的解析式;(2)已知直线l过点A,M(32,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,14t2【解析】(1)把点A(﹣3,94)代入y=ax2得到94∴a=1∴抛物线的解析式为y=14x(2)设直线l的解析式为y=kx+b,则有94解得k=−1∴直线l的解析式为y=−12x令x=0,得到y=3∴C(0,34由y=14x2y=−∴B(1,14如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴BMMC=M∴BMMC即MC2=MA•MB.(3)如图2中,设P(t,14t2∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,−12t∴|14t2﹣(−12t+整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1−7或﹣1+∴P(﹣1−7,2+72)或(﹣1+19.(2020·辽宁铁岭?中考真题)如图,抛物线与轴相交于点和点,与轴相交于点,作直线.(1)求抛物线的解析式;(2)在直线上方的抛物线上存在点,使,求点的坐标;(3)在(2)的条件下,点的坐标为,点在抛物线上,点在直线上,当以为顶点的四边形是平行四边形时,请直接写出点的坐标.【答案】(1);(2)点坐标为;(3),【解析】【分析】(1)将A、C点坐标分别代入抛物线中,联立即可求得a和c的值,从而求出抛物线解析式;(2)过点作轴交抛物线于点,则,过点作交抛物线于点,设,借助,即可求得t的值,从而求得D点坐标;(3)先求出直线BC的解析式,设,分DF为边和DF为对角线两种情况讨论,表示出M点坐标,代入抛物线中求得n的值,即可得出N点坐标.【详解】解:(1):抛物线经过点,解得∴抛物线的解析式为(2)过点作轴交抛物线于点,则过点作交抛物线于点过点作于点,则设点的横坐标为,则∵点是与轴的交点,解得的坐标为,解得(舍去),∴点的纵坐标为:则点坐标为(3)设直线BC的解析式为:,将C(0,3),B(4,0)分别代入得,,解得,∴直线BC的解析式为:,设,①当FD为平行四边形的边时,如图,当N点在M点左侧时,则即整理得,即,故,解得:,此时;同理当N点在M点右侧时可得,故,解得,此时;①当FD为平行四边形的对角线时,则,即故,整理得,该方程无解.综上所述:,.【点睛】本题考查二次函数综合,分别考查了求二次函数解析式,相似三角形的性质,和二次函数与平行四边形问题.(1)中直接代入点的坐标即可,难度不大;(2)中能正确作辅助线,构造相似三角形是解题关键;(3)中能分类讨论是解题关键,需注意平行四边形对边平行且相等,可借助这一点结合图象表示M点坐标.20.(2020·四川绵阳?中考真题)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【答案】(1)(,﹣);y=﹣x2+2x+1(2)(,);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年江苏公务员考试行测试题(B卷)
- 2024-2025学年第13课清朝前中期的鼎盛与危机-勤径学升高中历史必修上同步练测(统编版2019)
- 2025年共同发展协议书细目
- 2025年全球化学品物流协议
- 2025年仓储物流租赁合同文件
- 2025年四人股东策划经营合作协议书
- 2025年特种自行车项目立项申请报告模板
- 2025年公共服务设施建设策划管理协议书
- 2025年肥料级磷酸氢钙项目规划申请报告模板
- 2025年公共环卫设施:环卫垃圾桶项目立项申请报告模板
- 煤矿安全生产知识培训考试题库(800题)
- 青岛版二年级数学下册课程纲要
- 幼儿园2024-2025学年第二学期园务工作计划
- 2024-2030年中国精细化工行业发展分析及发展前景与投资研究报告
- 2024年北京市中考数学试卷(含答案解析)
- 河南省2024年中考英语真题【附真题答案】
- 2024公路工程施工安全风险辨识与管控实施指南
- 浙江省嘉兴市2023-2024学年高一上学期1月期末考试政治试题
- 2024年(学习强国)思想政治理论知识考试题库与答案
- 2024时事政治考试题库(基础题)
- 2023版《思想道德与法治》(绪论-第一章)绪论 担当复兴大任 成就时代新人;第一章 领悟人生真谛 把握人生方向 第3讲 创造有意义的人生
评论
0/150
提交评论