




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学公式
1、1、每份数X份数=总数总数+每份数=份数总数+份数=每份数
2、1倍数X倍数=几倍数几倍数+1倍数=倍数几倍数9倍数=1倍数
3、速度X时间=路程路程+速度=时间路程+时间=速度
4、单价X数量=总价总价+单价=数量总价+数量=单价
5、工作效率X工作时间=工作总量工作总量。工作效率=工作时间
工作总量+工作时间=工作效率
6、加数+加数=和和一一个加数=另一个加数
7、被减数一减数=差被减数一差=减数差+减数=被减数
8、因数X因数=积积+一个因数=另一个因数
9、被除数+除数=商被除数+商=除数商X除数=被除数
小学数学图形计算公式
1、正方形:C周长S面积a边长周长=边长X4C=4a面积=边长X边长S=aXa
2、正方体:V:体积a:棱长表面积二棱长X棱长X65表=@乂@义6
体积二棱长x棱长X棱长V=aXaXa
3、长方形:
C周长S面积a边长周长二(长+宽)X2C=2(a+b)面积=长X宽S=ab
4、长方体
V:体积s:面积a:长b:宽h:高
(1)表面积(长X宽+长X高+宽X高)X2S=2(ab+ah+bh)
⑵体积二长X宽义高V=abh
5、三角形
s面积a底h高面积=底乂高+2s=ah4-2
三角形高二面积X2+底
三角形底二面积X2+高
6、平行四边形:s面积a底h高面积二底X高s=ah
7、梯形:s面积a上底b下底h高面积=(上底+下底)X高+2s=(a+b)Xh+2
8圆形:s面c周长nd=直径片半径
⑴周长二直径xn=2xnx半径c=na=2nr
(2)面积:半径x半径xn
9、圆柱体:v体积h:高s:底面积r:底面半径c:底面周长
(1)侧面积:底面周长X高
(2)表面积二侧面积+底面积X2
(3)体积二底面积X高
(4)体积=侧面积+2X半径
10、圆锥体:v体积h高s底面积r底面半径体积二底面积X高。3
总数+总份数=平均数
和差问题的公式
(和+差)+2=大数
(和一差)+2=小数
和倍问题
和土(倍数-1)=小数
小数X倍数=大数
(或者和一小数=大数)
差倍问题
差士(倍数-1)=小数
小数X倍数=大数
(或小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长+株距-1
全长=株距x(株数一1)
株距=全长+(株数一1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长+株距
全长=株距X株数
株距=全长+株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数一1=全长+株距一1
全长=株距x(株数+1)
株距=全长+(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长+株距
全长=株距X株数
株距=全长子株数
盈亏问题
(盈+亏)+两次分配量之差=参加分配的份数
(大盈一小盈)+两次分配量之差=参加分配的份数
(大亏一小亏)+两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和X相遇时间
相遇时间=相遇路程+速度和
速度和=相遇路程+相遇时间
追及问题
追及距离=速度差X追及时间
追及时间=追及距离+速度差
速度差=追及距离+追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度一水流速度
静水速度=(顺流速度+逆流速度)+2
水流速度=(顺流速度一逆流速度)+2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量+溶液的重量X100%=浓度
溶液的重量X浓度=溶质的重量
溶质的重量。浓度=溶液的重量
利润与折扣问题
利润=售出价一成本
利润率=利润+成本X100%=(售出价+成本-1)X100%
涨跌金额=本金X涨跌百分比
折扣=实际售价+原售价X100%(折扣V1)
利息=本金X利率X时间
税后利息=本金X利率X时间X(1—20%)
长度单位换算
1千米=1000米1米=10分米
1分米=10厘米1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪二100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1小时=60分
1分=60秒1小时=3600秒
小学数学几何形体周长面积体积计算公式
1、长方形的周长;(长+宽)X2C=(a+b)X2
2、正方形的周长二边长X4C=4a
3、长方形的面积:长X宽S=ab
4、正方形的面积:边长X边长S=a.a=a
5、三角形的面积二底X高+2S=ah4-2
6、平行四边形的面积=底义高S=ah
7、梯形的面积=(上底+下底)X高+2S=(a+b)h+2
8、直径=半径X2d=2r半径=直径+2r=d+2
9、圆的周长;圆周率X直径二圆周率义半径义2c=nd=2nr
10、圆的面积=圆周率X半径义半径
常见的初中数学公式
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形
全等
27定理1在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角
所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的
一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直
平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,
即a-2+b-2=>2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系£2+-2=丁2,
那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)X180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形
63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积;对角线乘积的一半,即S=(aXb)4-2
67菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形
69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每
条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被
对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,
那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,
那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)+2S=LXh
83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性质如果a/b=c/d=…二m/n(b+d+…+n#0),那么(a+c+…+m)
/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成
比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得
的应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线
段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的
三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的
比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的
余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的
余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等
的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,
所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦
心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角
所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦
是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是
直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对
角
121①直线L和。0相交d<r
②直线L和。0相切d=r
③直线L和。0相离d>r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切
线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1经过圆心且垂直于切线的直线必经过切点
125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和
这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线
段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆
交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两
条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)⑤两圆内含dVR-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦
137定理把圆分成n(n23):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆
的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(11-2)X180°/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2p表示正n边形的周长
142正三角形面积J3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因
此kX(n-2)180。/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀If2/360=LR/2
146内公切线长=d-(R-r)外公切线长=d-(R+r)
实用工具:常用数学公式
公式分类公式表达式
乘法与因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|W|a|+|b||a-b|W|a|+|b||a|Wb<=>-b〈a<b
Ia-b|^|a|-1b|-|a|Wa<|a|
一^元二次方程的解-b+J(b2-4ac)/2a-b-V(b2-4ac)/2a
根与系数的关系Xl+X2=-b/aXl*X2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共朝复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(l-tan2A)ctg2A=(ctg2A-l)/2ctga
cos2a=cos2a-sin2a=2cos2a-l=l-2sin2a
半角公式
sin(A/2)=V((1-cosA)/2)sin(A/2)=-V((1-cosA)/2)
cos(A/2)=V((1+cosA)/2)cos(A/2)=-V((1+cosA)/2)
tan(A/2)=V((1-cosA)/((1+cosA))tan(A/2)=-V((1-cosA)/((1+cosA))
ctg(A/2)=V((1+cosA)/((1-cosA))ctg(A/2)=-V((1+cosA)/((1-cosA))
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-l)=n2
2+4+6+8+10+12+14+・••+(2n)=n(n+1)13+23+33+43+53+63+…n3=n2(n+1)2/4
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+l)/6
l*2+2*3+3*4+4*5+5*6+6*7+・・・+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=l/2c*h'
正棱台侧面积S=l/2(c+c')h'圆台侧面积S=l/2(c+c*)l=pi(R+r)1
球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h
圆锥侧面积S=l/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0扇形公式s=l/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=l/3*pi*r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
常用数学公式
一、乘法与因式分解公式
1.1a2-6'=(a—d)(a+6)
1.2±/=3±6)(白2干ab+b2)
]3r»_(a_6)001十CjC_26+_3/十…十abr»-2十旷-1)(”为正整数)
+…十就e
(a+6)(ae-1+ae_2g_ae-3^2-2-bn-1')(外为偶数)
1.4ab+bn=(a+b)(an-1-zb+an-3b2-----ab'*-2十旷-i)m为奇数)
二、三角不等式
2.1|a+fe|<|a|+|6|
2.2|a-d|<|a|+|6|
2.32-M2|a|一同
2.4-|a|<a<|a|
2.6同<b^—b<a<b
三、一■兀二次方程a工2+6工+0=0的解
3.2(韦达定理)根与系数的关系:
bc
工1+工2=-工1工2=一
aa
(>0万桂侣柏异一头恨,
3.3判别式:62-4aJ=0方程有相等二实根,
I<0方程有共辗复数根.
四、某些数列的前n项和
4.11+2+3+,“十设=胞尊
4.21+3+5+…+(2设-1)="2
4.32+4+6H----F(2n)=n(n+1)
2222n(n+12n+1)
4.4l+2+3+...+n=^
6
H1202K2.<01、2^(4n2-1)
4A.51+3十5十…十(2"-1)=---------
13^33.-+n3=n^+1)2
4.6+++
4
4.7l3+33+53+.••+(2n-l)3=n2(2n2-1)
n(n+l)(n+2)
4.81-2+2-3+,,,+n(n+1)=
3
五、二项式展开公式
5.1(。十.°二八十根~'十"5;1)小一怒2十设("-;),2)二一353十…十
十…(1+1)十-忖十…十小
瓦!
六、三角函数公式
1两角和公式
6.1sin(a±⑶=sinacos(3±cosasin(3
6.2cos(a±⑶=cosacos(3干sinasin(3
tana±tan0
6.3tan(a±仍=
1=Ftanatan/3
/,八、cotacot6干1
6.48t(a±0=8to±cota
2倍角公式
6.5sin2a=2sinasin6
6.6cos2a=cos工—sin=2cos'a—1=1—2sina
2tana
6.7tan2a=-------------
1—tan"a
cot%—1
6.8cot2a=--------------
zrot.rr.
3半角公式
6,g.介土>
八一八a/1+cosa
6.10cos—=±\---------------
2V2
八一a,11-cosa1-cosasina
6.11tan—=±J---------------=——;------=----------
2V1+cosasina1+cosa
八.八a,/1+cosasina1+cosa
6.12cot-=±\--------------=---------------=——;------
2VI—cosa1—cosasina
4和差化积
6.132smacos(3=sin(a+十sin(a-(3)
6.142cosasin(3=sin(a+—sin(a-⑶
6.152cosacos(3=cos(a十⑶十cos(a-(3)
6.16—2sinasin(3=cos(a+Q)—cos(a—Q)
a17•z?Q。十/°a一
6.17sma+sinp=2sin---cos―--
a+(3,a—/3
6.18sina—sin。=2cos-----sm------
22
a十0a—/3
6.19cosa+cos6=2cos-----cos------
22
a+(3,a—/3
6.20cosa—cos6=-2sin-----sm------
22
csin\a±(3)
6.21tana±tan^=——-——三
cosacosjS
6.22cota±cot户=±血
sinasin(3
七、导数与微分
1求导与微分法则
7.1(c/=0fin=0
7.2(cv)z=cv=cdv
7.3(u±=u+vd(u±廿)=du±du
7.4(•)'=u七十uvd{uv)=vdu十udv
75/Ku)\z=vluz—Luv
2导数及微分公式
7,6(0'=n/一\?=71廿”-1小,
2vv
,Vdv
7.7(Inv)=—dinv=
M7.
g")dlogv=—
a9?Ina
7.8(打=8%'Ha"=
(娟'=a"lna'v成Inn,dv
7.9(sinvY=cosv-vUsin=COR廿•易
z
7,10(cost/)=-sinvvdcosu=sinvdv
7.11(tanu/=sec'廿-vdhan9?=RAG廿J?7
7.12(cotvY=-escvdcotv=—escvdv
7.13(secvY=secutanv.vdUQC廿=97t.a.n廿康
f
7.14(escv)——escvcotvvdescv=—escvcotv•dv
t
v,dv
7.15iarcsinV)f=-)aarcsmv=――
,V/
7,16Iarccosv)=------,=darccosv=—
□
dv
tv
7,17Iarctanu)=--------darctanv=---------
1+v1+v2
vdv
7.18(arcctgv)’=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 净水机租赁合同版
- 最简易采购合同模板
- 消防设施安装工程承包合同安全协议书
- 度标准施工合同范本
- 劳动合同续签合同补充条款正规范本
- 演出服装租赁合同范本
- Module 2 Unit 3 About me(教学设计)-2024-2025学年牛津上海版(试用本)英语三年级上册
- 翻译行业合同范本大全
- 学生公寓租房合同样本
- 石油产品运输合同范本
- 现代汉语(黄伯荣、廖序东版)课件-第四章语法课件
- 统编版小学语文五年级下册第四单元解读与大单元设计思路
- 压疮护理质控反馈
- 山东春季高考Photoshop考试复习题库(含答案)
- 湖南省长沙市2023-2024学年八年级下学期入学考试英语试卷(附答案)
- 一年级美术课后辅导教案-1
- 智慧社区建设中的智能化医疗与康养服务
- 2023-2024年人教版八年级上册数学期末模拟试卷(含答案)
- 数据采集管理制度范文
- 幼儿园小班开学家长会课件
- 中药抗骨质疏松作用
评论
0/150
提交评论