北师大版九年级数学上册一元二次方程《回顾与思考》公开教学课件_第1页
北师大版九年级数学上册一元二次方程《回顾与思考》公开教学课件_第2页
北师大版九年级数学上册一元二次方程《回顾与思考》公开教学课件_第3页
北师大版九年级数学上册一元二次方程《回顾与思考》公开教学课件_第4页
北师大版九年级数学上册一元二次方程《回顾与思考》公开教学课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

单元复习(1)第二章

一元二次方程九年级数学上册•北师大版一元二次方程应用的一般步骤:1.审(题);2.找(数量关系);3.设(未知数);4.列(出方程);5.解(方程);6.检(验根的合理性);7.答(写出答案).一、复习回顾1.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121;B.100(1-x)=121;C.100(1+x)2=121;D.100(1-x)2=121.C二、尝试解决若平均增长(或降低)百分率都是x,增长(或降低)前的量是a,增长(或降低)n次后的量是b,则他们的数量关系可表示为a(1±x)n=b.二、尝试解决2.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.二、尝试解决解:设AB的长为xm,则BC=(50-2x)m,x(50-2x)=300,解得x1=10,x2=15.

注意围墙的长度当x=10时,BC=30>25,∴不符合题意,舍去.∴当x=15m,BC=20m时,矩形花园的面积为300m2.二、尝试解决x50-2x3.某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)二、尝试解决解:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0,解之,得x1=1,x2=34.∵34>30,∴x=1.答:小道进出口的宽度应为1米.30-2x20-x平移法二、尝试解决

例1.李老伯在该土地上种植西瓜,喜获丰收,经计算西瓜成本2元/千克,若以3元/千克的价格出售,每天可售出200千克,为了促销,李老伯决定降价销售.经调查发现,这种西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本需要24元.李老伯要想每天盈利200元,并想使西瓜尽快销售出去,应将每千克西瓜的售价降低多少钱?设每千克西瓜降低x元;总利润=(售价-进价)×销量-固定成本三、例题解析单价成本销量固定成本降价前3220024降价后2243-x200+400x

解:设每千克西瓜降低x元,(3-x-2)(200+400x)-24=200,解之,得x1=0.2,x2=0.3.∵为使西瓜尽快销售出去,∴x=0.3.答:每千克西瓜的售价降低0.3元.三、例题解析例1.李老伯在该土地上种植西瓜,喜获丰收,经计算西瓜成本2元/千克,若以3元/千克的价格出售,每天可售出200千克,为了促销,李老伯决定降价销售.经调查发现,这种西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本需要24元.李老伯要想每天盈利200元,并想使西瓜尽快销售出去,应将每千克西瓜的售价降低多少钱?

例如,在绿地中间开辟一个矩形的花圃,使四周的绿地等宽,绿地的面积与花圃的面积相等,你能计算出剩余绿地的宽吗?例2:在一块长是32m、宽24m的矩形绿地内,要围出一个花圃,使花圃面积是矩形面积的一半,你能给出设计方案吗?三、例题解析

例如,在绿地中间开辟一个矩形的花圃,使四周的绿地等宽,绿地的面积与花圃的面积相等,你能计算出剩余绿地的宽吗?例2:在一块长是32m、宽24m的矩形绿地内,要围出一个花圃,使花圃面积是矩形面积的一半,你能给出设计方案吗?x解:设剩余绿地的等宽长为xm,x三、例题解析3224

例如,在绿地中间开辟一个矩形的花圃,使四周的绿地等宽,绿地的面积与花圃的面积相等,你能计算出剩余绿地的宽吗?例2:在一块长是32m、宽24m的矩形绿地内,要围出一个花圃,使花圃面积是矩形面积的一半,你能给出设计方案吗?(32-2x)(24-2x)=×32×24,解得,x1=4,x2=24(舍).答:绿地的宽为4m.x解:设剩余绿地的等宽长为xm,x三、例题解析3224

例3.如图,在矩形中ABCD,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.(1)几秒钟后△DPQ的面积等于31cm2;x2x6-x12-2x三、例题解析

解:设x秒后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,由题意得:6×12-0.5×12x-0.5×6(12-2x)-0.5(6-x)2x=31,整理,得x2-6x+8=0,解之得x1=1,x2=5.答:1s或5s后△DPQ的面积为31cm2.三、例题解析x2x6-x12-2x

解:设x秒后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,由题意得:0.5×12x+0.5×6(12-2x)+0.5(6-x)2x=41,解之得x1=1,x2=5.答:1s或5s后△DPQ的面积为31cm2.九年级数学名师课程三、例题解析x2x6-x12-2x

三、例题解析例3.(2)在运动过程中,是否存在这样的时刻,使以点QP=QD.若存在,求出运动时间;若不存在,请说明理由.

x2x6-x12-2x

假设运动开始后第x秒时,满足QP=QD,∵QP2=PB2+BQ2=(6-x)2+(2x)2,QD2=QC2+CD2=(12-2x)+62,∴(12-2x)2+62=(6-x)2+(2x)2,∴x2+36x-144=0,∴x1=-18+6,x2=-18-6.∵0<-18+6<6,∴x=-18+6.三、例题解析例3.(2)在运动过程中,是否存在这样的时刻,使以点QP=QD.若存在,求出运动时间;若不存在,请说明理由.

x2x6-x12-2x

1.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有()A.12人 B.18人 C.9人 D.10人

C设这个小组有x人,x(x-1)=72,解之得x1=9,x2=-8(舍).四、及时巩固∴x2-11x+30=0,解之得x1=5,x2=6.当x=5时,则11-5=6,当x=6时,则11-6=5.∴能围成面积是30cm2的矩形.2.有一根长22cm的铁丝:(1)能否围成面积是30cm2的矩形?解:设矩形一边长为xcm,则另一边长为(11-x)cm.∴x(11-x)=30,四、及时巩固x11-x2.有一根长22cm的铁丝:(2)能否围成面积是32cm2的矩形?并说明理由.解:设矩形一边长为xcm,则另一边长为(11-x)cm.∴x(11-x)=32,∴x2-11x+32=0,∵△=112-128=-7<0,∴原方程无解.∴不能围成面积是32cm2的矩形.四、及时巩固x11-x2.有一根长22cm的铁丝:(3)能否求出所能围成的矩形面积的最大值.解:设矩形一边长为xcm,则另一边长为(11-x)cm.∴S矩形=x(11-x),四、及时巩固x11-x2.有一根长22cm的铁丝:(3)能否求出所能围成的矩形面积的最大值.解:设矩形一边长为xcm,则另一边长为(11-x)cm.∴S矩形=x(11-x),∴S矩形=-x2+11x=-(x2-11x)=-(x2-11x+-)=-(x-)2+.∴当x=时,S矩形最大值=.四、及时巩固x11-x

3.如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计).(1)长方体盒子的长、宽、高分别为多少cm.解:(1)高为xcm,长为(30-2x)cm,宽为(40-2x)÷2=(20-x)cm.四、及时巩固

(2)若折成一个长方体盒子表面积是950cm2,求此时长方体盒子的体积.高为xcm;长为(30-2x)cm;宽为(20-x)cm.(2)由题意得950+2(x2+20x)=30×40,解之得x1=5,x2=-25(舍),∴V=(30-2×5)×5×(20-5)=1500(cm3).答:长方体盒子的体积为1500cm3.四、及时巩固

4.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发.(1)几秒后,△PBQ的面积等于4cm2?四、及时巩固2t5-tt2t5-tt

解:(1)设时间为t,AP=t,BP=5-t,BQ=2t,∵∠B=90°,∴S△PBQ=BP·BQ=·2t(5-t)=4,整理,得t2-5t+4=0,4.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发.(1)几秒后,△PBQ的面积等于4cm2?解之,得t1=4,t2=1.当t=4时,BQ=8>7,不成立,舍去.∴1秒后,△PBQ的面积等于4cm2.四、及时巩固2t5-tt2t5-tt

4.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论