FRL-助力金融发展:生成式人工智能在跨国融资中的关键作用-Fueling financial development The crucial role of generative AI financing across nations_第1页
FRL-助力金融发展:生成式人工智能在跨国融资中的关键作用-Fueling financial development The crucial role of generative AI financing across nations_第2页
FRL-助力金融发展:生成式人工智能在跨国融资中的关键作用-Fueling financial development The crucial role of generative AI financing across nations_第3页
FRL-助力金融发展:生成式人工智能在跨国融资中的关键作用-Fueling financial development The crucial role of generative AI financing across nations_第4页
FRL-助力金融发展:生成式人工智能在跨国融资中的关键作用-Fueling financial development The crucial role of generative AI financing across nations_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FinanceResearchLetters72(2025)106519

Contentslistsavailableat

ScienceDirect

FinanceResearchLetters

journalhomepage:

/locate/frl

Fuelingfinancialdevelopment:ThecrucialroleofgenerativeAIfinancingacrossnations

AbuBakkarSiddik

a

,YongLi

a

,AnnaMinDu

b

,*

,MilenaMigliavacca

c

aSchoolofManagement,UniversityofScienceandTechnologyofChina,Hefei,PRChinabTheBusinessSchool,EdinburghNapierUniversity,Edinburgh,UnitedKingdom

cDepartmentofEconomicsandBusinessAdministration,Universita、CattolicadelSacroCuore,Italy

ARTICLEINFO

ABSTRACT

JELClassifications:

O33G21C33L86D83

Keywords:

GAIfinancing

FinancialdevelopmentPublicityexposure

Cross-sectionalanalysis

ThisstudyexaminestheimpactofGenerativeAI(GAI)financingonfinancialdevelopment(FD)across21countriesusingcross-sectionaldatafrom2020to2022.Employingbothsimplelinearregressionandtwo-stageleastsquares(2SLS)toaddressendogeneity,wefindthatGAIfinancingsignificantlycontributestofinancialdevelopment,withstrongereffectsobservedinAsianandnon-Europeanregions.Regionalheterogeneityisevident,highlightingvaryingimpactsacrossdifferentsubcontinents.PolicyimplicationssuggestpromotingGAIecosystems,attractingforeigninvestment,andenhancingpublicityforGAIstartups.ThestudyhighlightstheneedforfutureresearchontheethicalimplicationsanddynamiceffectsofGAIfinancing.

1.Introduction

TheriseofGenerativeArtificialIntelligence(GAI)hasrevolutionizedvariousindustries(

DowlingandLucey,2023

;

Dwivedietal.,

2023

;

Siddiketal.,2024

),transformingthewaybusinessesoperateandimpactingbroadereconomicsystems.AsasubsetofAI,GAIusesmachinelearningmodelstogeneratecontent,includingtext,images,andvideos,mimickinghumancreativityandintelligence(

Chakrabortyetal.,2024

;

Dwivedietal.,2023

;

HermannandPuntoni,2024

).Inrecentyears,GAIfinancing,thefundingallocatedtoGAIstartupsandprojects,hasrapidlyexpandedasinvestorsrecognizethedisruptivepotentialofthesetechnologies.Duringarapidemergence,GAIstartupshaveattractedhugefundingfrominvestors,withover$25Binfunding

1in2023alone.However,thelink

betweenGAIfinancingandfinancialdevelopment(FD),particularlyatamacroeconomiclevel,remainsunderexplored.ThisstudyseekstobridgethisgapbyanalyzinghowGAIfinancinginfluencesfinancialdevelopmentacrossdifferentcountriesandregions.

Financialdevelopmentreferstothegrowthandmaturityoffinancialinstitutionsandmarkets,characterizedbyimprovedaccess,efficiency,anddepth(

AsteriouandSpanos,2019

;

MeniagoandAsongu,2018

;

Nasreenetal.,2020

).Theliteratureonfinancialdevelopmenttypicallyfocusesontraditionalsectors,includingbanking,microfinance,andequitymarkets(

Ashraf,2018

;

Bannaetal.,

2022

;

Mhadhbietal.,2021

;

WuandBowe,2010

).However,theadventofdisruptivetechnologieslikeGAIisreshapingthefinanciallandscape(

Ardekanietal.,2024

;

DowlingandLucey,2023

;

Dwivedietal.,2023

),necessitatingacloserexaminationofhowsuch

*Correspondingauthor.

E-mailaddresses:

ls190309@

,

absiddik.nub@

(A.B.Siddik),

yonglee@

(Y.Li),

a.du@napier.ac.uk

(A.M.Du),

milena.migliavacca@unicatt.it

(M.Migliavacca).

1Retrievedfrom

https://dealroom.co/guides/generative-ai

/10.1016/j.frl.2024.106519

Received6October2024;Receivedinrevisedform14November2024;Accepted24November2024Availableonline26November2024

1544-6123/©2024TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(/licenses/by-nc-nd/4.0/

).

A.B.Siddiketal.FinanceResearchLetters72(2025)106519

2

innovationsdrivefinancialgrowth.GAIhasthepotentialtorevolutionizefinancialservices,improvedecision-makingprocesses,andenhancemarketefficiency.Yet,despiteitsgrowingprominence,researchontherelationshipbetweenGAIfinancingandfinancialdevelopmentremainslimited.

Intherapidlyevolvingfinancesector,digitaltechnologiesarereshapingtraditionalmodelsanddrivingimpactfulinnovation.Frommobilebankinganddigitalwalletstofintechandrobo-advisors,digitalfinancehastransformedconsumerbehaviorandredefinedfinancialsystemsglobally(

Congetal.,2024

).AgrowingbodyofresearchemphasizesAI’stransformativepotential:

Ardekanietal.

(2024)

introducedFinSentGPT,asentimentanalysismodelsurpassingtraditionalmethods,while

Panetal.(2024)

demonstratedAI’sroleinstrengtheningregulatoryoversight.

Daníelssonetal.(2022)

alsohighlightAI’spotentialrisks,suchasamplifyingsystemicvulnerabilitiesdespiteitsefficiencies.(

Siddiketal.,2024

)foundthatinvestorinfluencesignificantlyenhancesfundingforGAIstartups,whiletechnologicalinfluenceislimited,underscoringtheimportanceofinvestornetworksinsupportingGAIexpansion.AlthoughthesestudiesillustrateAI’sbroadimpact,theydonotspecificallyaddressGAIfinancing’sroleinadvancingfinancialdevelopment.

DespiteextensiveresearchonAI’simpactonfinancialsystems(

Ardekanietal.,2024

;

Panetal.,2024

;

Sachanetal.,2024

),agapremainsinunderstandinghowGAIfinancingcontributestomacro-levelfinancialdevelopment.MoststudiesfocusonAI’stechnicalapplications,butfewexaminehowthefundingofGAIstartupsaffectsbroaderfinancialgrowth,particularlyindevelopingregions.AsGAItechnologiesbecomeincreasinglyintegratedintofinancialservices(

AlmeidaandGonçalves,2024

;

DowlingandLucey,2023

;

Dwivedietal.,2023

),itisessentialtoassesstheireconomicimpact,especiallyregardingfinancialsystemgrowthandmaturity.Toaddressthisgap,ourstudyinvestigatestheimpactofGAIfinancingonfinancialdevelopmentusingcross-sectionaldatafrom2020to2022.Itexploresthreekeyquestions:(1)HowdoesGAIfinancinginfluencefinancialdevelopmentacrosscountries?(2)WhatroledoespublicityexposureplayinsecuringGAIfinancing?(3)AretheresignificantregionaldifferencesinGAIfinancing’simpactonfinancialdevelopment?ThisstudyaimstoprovideacomprehensiveunderstandingofGAIfinancing’seffectsonfinancialdevelopmentatbothcountryandregionallevels.

ThenoveltyofthisstudyliesinitsfocusonGAIfinancingasadriveroffinancialdevelopment,arelationshiplargelyoverlookedintheliterature.WhilepreviousstudieshaveexaminedAI’sroleinfinancialsystems,theyhavenotaddressedGAIfinancing’smacro-economicimplications.Byanalyzingcross-sectionaldataacrossmultiplecountries,thisstudyoffersauniqueviewonhowGAIstartupscontributetofinancialdevelopment.Additionally,introducingpublicityexposureasaninstrumentalvariableprovidesinsightsintohowmediavisibilityaffectsinvestorconfidenceandfunding.Thestudyalsoexploresregionalheterogeneity,offeringvaluableinsightsforpolicymakerstopromotefinancialgrowthacrossdifferentsubcontinents.

2.Materialsandmethods

2.1.Dataandvariables

WeexaminetheimpactofGAIfinancingonthefinancialdevelopmentof21selectedcountriesusingacross-sectionaldataset.OurmeasureofGAIfinancingisbasedonthetotalfunding(inUSDmillion)receivedbyGAIstartupsestablishedbetween2010and2022,withdatasourcedfromCrunchbase,acomprehensiveplatformprovidinginformationonstartups,investments,andfundingactivities

.

(

LeeandGeum,2023

;

Uddinetal.,2024

;

ZbikowskiandAntosiuk,2021

).WeselectedcountriesthathadatleasttwoGAIstartupswithrecordedfunding,resultinginafinalsampleof384startupsacross21countries.

ToassessGAIfinancing’sinfluenceonfinancialdevelopment,wecollectedfinancialdevelopmentindexdatafromtheInternationalMonetaryFund(IMF)fortheyears2020,2021,and2022.Althoughouranalysisfocusesonthesethreeyears,reflectingthemostrecentandreliabledataavailable,weacknowledgethatthislimitedtimeframemayrestrictinsightsintolonger-termdynamiceffects.However,ourchoiceofacross-sectionalapproach,withdatafrom2020to2022,allowsforafocusedanalysisofshort-termimpactsinarapidlyevolvingtechnologicalcontext.Additionally,weincorporatedcontrolvariablesatbothcompanyandcountrylevels,detailedin

Table1

,toensuretherobustnessofourfindings.Tofurtheraddresspotentialendogeneityconcerns,weemployedPublicity

Table1

Variabledescriptions.

VariableType

VariableName

Symbol

Description

Source

Dependent

Financial

FD

Acompositeindexmeasuringthedevelopmentoffinancialinstitutionsandmarkets,

IMF

Variable

Development

basedondepth,access,andefficiency,fortheyears2020,2021,and2022.

Independent

GenerativeAI

GAIF

Thenaturallogarithmoftotalfunding(inmillionUSD)receivedbyindividualGenerative

Crunchbase

Variable

Financing

AIstartups.

ControlVariables

NumberofEmployeesStartupAge

StartupITSpending

ForeignDirect

Investment

NationalIncome

NOE

AGE

ITspendFDI

NI

AcategoricalvariablerepresentingtherangeofemployeesinGAIstartups(e.g.,1–10,11–50,51–100).

ThenumberofyearssincetheGAIstartupwasfounded.

ThenaturallogarithmoftotalannualITspendingbythestartup(inUSD).

NetinflowsofforeigndirectinvestmentasapercentageofGDPfortheyears2020,2021,and2022.

Thenaturallogarithmofadjustednetnationalincome(currentUSD)fortheyears2020,2021,and2022.

Crunchbase

CrunchbaseCrunchbaseWDI

WDI

Instrumental

PublicityExposure

PE

Thenaturallogarithmoftotalmediacoverage,includingpressmentions,articles,and

Crunchbase

variable

newsfeatures.

A.B.Siddiketal.FinanceResearchLetters72(2025)106519

3

Exposureasaninstrumentalvariable.

ThestatusandtrendsofGAIstartupsacross21countriesrevealsignificantvariationinboththenumberofstartupsandthefundingtheyhavereceived,asshownin

Fig.1

.TheUnitedStatesdominatesthelandscape,with229startupssecuringover$34.9billioninfunding,farsurpassinganyothercountry.TheUnitedKingdomfollows,with31startupsreceiving$642.75million.OthercountriessuchasGermanyandCanadaalsostandout,with17and16startupsreceiving$1.27billionand$1.07billion,respectively.Incontrast,smallermarketslikeArgentina,Estonia,andSouthKoreahavefewerstartups,typicallyreceivinglessthan$10millioninfunding.CountrieslikeAustralia,Brazil,Israel,andFrancehavemoderatenumbersofstartups,eachsecuringbetween$67millionand$487million.ThedataindicatesthatwhiletheU.S.istheclearleader,EuropeanandAsiancountriesarealsoseeingmeaningfulde-velopmentsinGAIfunding,albeitonasmallerscale.ThisdiversedistributionhighlightsthegrowingglobalinterestinGAI,thoughinvestmentishighlyconcentratedinafewkeymarkets.

2.2.Econometricmodels

ToexaminetheimpactsofGAIfinancingonfinancialdevelopment,weutilizesimplelinearregressionmodelsfortheyears2020,2021,and2022.Themodelsforeachyeararespecifiedseparately,asshowninthefollowingequations:

Fortheyear2020:

FDc=β0+β1GAIFc+β2NOEc+β3Agec+β4ITspendc+β5FDIc+β6NIc+ϵc……………..(M1)

Fortheyear2021:

FDc=β0+β1GAIFc+β2NOEc+β3Agec+β4ITspendc+β5FDIc+β6NIc+ϵc……………..(M2)

Fortheyear2022:

FDc=β0+β1GAIFc+β2NOEc+β3Agec+β4ITspendc+β5FDIc+β6NIc+ϵc……………..(M3)

Where:

FDcrepresentsfinancialdevelopmentforcountrycfortheyears(2020,2021,and2022).GAIFcisthetotalfundingreceivedbyGAI

Fig.1.ThestatusofGAIstartupswiththeirrespectivefundinginthesamplecountries.

4

A.B.Siddiketal.FinanceResearchLetters72(2025)106519

startupsincountryc.β2toβ6arecontrolvariablesforcountryc.εcistheerrortermforcountrycfortheyears(2020,2021,and2022).Toovercomepotentialendogeneityissuesandenhancetherobustnessofourbasemodel,weintroducethetwo-stageleastsquares

(2SLS)method.ThisapproachhelpsmitigateanybiasthatmayarisefromendogeneityintherelationshipbetweenGAIfinancingandfinancialdevelopment.Byusing2SLS,weaddresspotentialreversecausalityoromittedvariablebiasthatcouldaffecttheaccuracyoftheestimatedcoefficients.Moreover,weconductaheterogeneityanalysisbasedonsubcontinent-wisedivisions.ThisallowsustoexaminewhethertheimpactsofGAIfinancingonfinancialdevelopmentvaryacrossdifferentregions.Thesubcontinent-wiseanalysishelpsidentifywhetherregionalfactors,suchaseconomicconditionsorinstitutionaldifferences,leadtovariationsintheeffectsofGAIfinancingonfinancialdevelopment.Thisanalysisiscrucialtounderstandingthebroaderapplicabilityofourfindingsacrossdiversegeographiccontexts.

3.Resultsanddiscussion

3.1.Descriptivestatistics

Thedescriptivestatisticsprovideinsightsintothevariablesusedintheanalysisacrosstheyears2020,2021,and2022,asshownin

Table2

.Financialdevelopmentshowsrelativelystablemeansacrossthethreeyears,withslightvariationinstandarddeviation.GAIFhasameanof6.59(logarithmicform),withaconsiderablerangefrom3.65to10.05.ControlvariablessuchasNOE,startupage,andITspendingshowmoderatevariationacrossobservations.

Thecorrelationmatricesindicatetherelationshipsbetweenthevariables,asshownin

TableA1(a

-c

inAppendix).Forallyears,GAIFhasapositiveandsignificantcorrelationwithFD(around0.22),suggestingamoderateassociation.ITspendingalsoshowsapositivecorrelationwithFD,whileFDIexhibitsastrongnegativerelationshipwithFD,particularlyin2020and2022.NIconsistentlyshowsastrongpositivecorrelationwithFD,reinforcingitsimportanceasacontrolvariable.Additionally,thecorrelationbetweenGAIFandNOE(0.639),indicatingthatasthefinancingincreases,thenumberofemployeestendstoincreaseaswell.Similarly,GAIFandITspendingarepositivelycorrelated(around0.202),meaningthatstartupswithhigherfinancingalsotendtospendmoreonITinfrastructure.

3.2.Benchmarkregression

Thebenchmarkregressionresults(

Table3

)showthatGAIFconsistentlyhasapositiveandsignificantimpactonFDacrossallthreeyears(2020,2021,and2022).ThecoefficientsforGAIFrangebetween0.018and0.031,indicatingthathigherGAIfinancingcon-tributestoincreasedfinancialdevelopment.ThissuggeststhatGAIstartupsplayacrucialroleinenhancingthefinancialdevelopmentofthecountriesinthesample.ThemodelsalsoshowthatNOEhasanegativeandsignificanteffectonFD,implyingthatlargerGAIstartups(intermsofemployees)maynotnecessarilyboostfinancialdevelopment.Ontheotherhand,AGEandITspendingshownosignificantinfluenceonfinancialdevelopment.

ThecontrolvariablesFDIandNIhavesignificanteffectsonfinancialdevelopment.FDIconsistentlyshowsanegativeandsig-nificantrelationshipwithFD,whilenationalincomehasastrongpositiveimpactacrossallyears,highlightingtheroleofbroadereconomicfactorsinshapingfinancialdevelopment.ThehighR-squaredvalues(0.594–0.620)acrossthemodelsindicatethattheindependentvariablesexplainasubstantialportionofthevariationinfinancialdevelopment.Thesefindingsunderscoretheimpor-tanceofbothGAIfinancingandmacroeconomicvariablesindeterminingfinancialdevelopment,whilealsopointingtopotentialareasforfurtherinvestigation,suchastheroleofITspendingandfirmcharacteristics.

3.3.Robustnessanalysis

Theoutcomesofthe2SLSapproachpresentedin

Table4

indicatetherobustnessoftherelationshipbetweenGAIFandFDwhileaddressingpotentialendogeneity.Inthefirststage,PublicityExposure(PE)isusedasaninstrumentalvariableforGAIF,showinga

Table2

Descriptivestatistics.

Variable

Observation

Mean

Std.Dev.

Min

Max

FD2020

384

0.839

0.132

0.280

0.950

FD2021

384

0.840

0.136

0.252

0.939

FD2022

384

0.841

0.141

0.225

0.929

GAIF

384

6.590

1.033

3.653

10.053

NOE

383

2.117

1.234

1.000

8.000

AGE

384

4.521

2.744

1.000

14.000

Itspend

384

2.321

2.767

0.000

7.109

FDI2020

384

0.197

0.976

−1.219

3.140

FDI2021

384

0.629

0.972

−2.634

3.454

FDI2022

384

0.586

0.859

−4.048

3.884

NI2020

384

29.438

1.464

23.960

30.514

NI2021

384

29.543

1.443

24.121

30.606

NI2022

384

29.637

1.427

24.260

30.691

5

A.B.Siddiketal.FinanceResearchLetters72(2025)106519

Table3

Benchmarkregression.

Models

(M1)

(M2)

(M3)

(M4)

(M5)

(M6)

Variables

FD2020

FD2020

FD2021

FD2021

FD2022

FD2022

GAIF

0.028***

0.018***

0.029***

0.023***

0.031***

0.023***

(4.331)

(3.308)

(4.444)

(4.150)

(4.538)

(4.007)

NOE

−0.016***

−0.019***

−0.019***

(−3.311)

(−3.800)

(−3.726)

AGE

−0.001

−0.000

−0.000

(−0.333)

(−0.190)

(−0.034)

Itspend

0.003

0.002

0.002

(1.526)

(1.318)

(1.147)

FDI2020

−0.031***(−4.587)

NI2020

0.050***(10.794)

FDI2021

−0.025***(−5.481)

NI2021

0.067***(20.923)

FDI2022

−0.022***(−3.967)

NI2022

0.068***(18.870)

Constant

0.657***

−0.702***

0.647***

−1.235***

0.637***

−1.265***

(15.455)

(−5.139)

(14.753)

(−13.211)

(14.057)

(−11.995)

N

384

384

384

384

384

384

R2

0.047

0.600

0.049

0.620

0.051

0.614

adj.R2

0.044

0.594

0.047

0.613

0.049

0.608

Note:Significantat*p<0.1,**p<0.05,***p<0.01.

strongandsignificantpositiveeffectonGAIFacrossallmodels,withcoefficientsaround0.80.ThisdemonstratesthatPUisastronginstrumentforpredictingGAIfinancing.Inthesecondstage,GAIFcontinuestohaveapositiveandsignificantimpactonFDinallthreeyears(2020,2021,and2022).Thecoefficientsrangefrom0.029to0.034,confirmingthathigherGAIfinancingpositivelyinfluencesfinancialdevelopment,evenafteraccountingforendogeneity.Theunder-identificationtest(Kleibergen-Paap)showsthatthemodelsarewell-identified,andtheweakidentificationtestconfirmsthestrengthoftheinstrument.Additionally,theHansenJstatisticforoveridentificationdoesnotrejectthenullhypothesis,indicatingthattheinstrumentsarevalid.Thus,the2SLSresultsreinforcethefindingsfromthebenchmarkmodel,showingthatGAIfinancingsignificantlyenhancesfinancialdevelopment,andtheinstrumentalvariableapproacheffectivelyaddressespotentialbias.

3.4.Heterogeneityanalysis

TheheterogeneityanalysisexaminesthevaryingimpactsofGAIFonFDacrossdifferentsubcontinentalregions,asoutlinedin

Table5

.InPanelA(Asianvs.non-Asiancountries),GAIFhasasignificantandpositiveimpactonFDinAsiancountriesacrossallyears,withcoefficientsrangingfrom0.043to0.056.However,innon-Asiancountries,GAIF’simpactismuchweaker,withcoefficientsclosetozeroandstatisticalsignificanceonlyin2021(0.008,p<0.1).ThissuggeststhatGAIfinancingplaysamorecriticalroleindrivingfinancialdevelopmentinAsiancountriescomparedtonon-Asianregions.

PanelB(Europeanvs.non-Europeancountries)showsasimilardivergence.Innon-Europeancountries,GAIFhasapositiveand

Table4

TheestimationusinganIVapproachisconductedthrougha2SLSmethod.

Models

(M1)

(M2)

(M3)

(M4)

(M5)

(M6)

Variables

GAIF

FD2020

GAIF

FD2021

GAIF

FD2022

PE

0.796***

0.802***

0.799***

(13.560)

(13.770)

(13.680)

GAIF

0.029**

0.031**

0.034***

(2.690)

(2.920)

(3.350)

Constant

3.417***

−0.738**

2.597***

−1.251***

2.228***

−1.284***

(3.320)

(−2.670)

(3.730)

(−9.240)

(2.940)

(−12.110)

Controlvariables

Yes

Yes

Yes

Yes

Yes

Yes

N

384

384

384

384

384

384

Underidentificationtest

56.052***

57.043***

56.639***

Weakidentificationtest

183.901

189.503

187.238

HansenJstatistic

0.000

0.000

0.000

Note:Significantat*p<0.1,**p<0.05,***p<0.01.

6

A.B.Siddiketal.FinanceResearchLetters72(2025)106519

Table5

Heterogeneityanalysissubcontinentwise.

PanelA:Asianandnon-Asiancountries.

Models

Asian

Non-Asian

Asian

Non-Asian

Asian

Non-Asian

Variables

FD2020

FD2020

FD2021

FD2021

FD2022

FD2022

GAIF

0.056**

0.005

0.052**

0.008*

0.043*

0.008

(2.379)

(1.068)

(2.181)

(1.695)

(1.959)

(1.531)

Controlvariables

Yes

Yes

Yes

Yes

Yes

Yes

Constant

1.072

−0.610***

0.543

−1.154***

0.396

−1.123***

(1.393)

(−4.972)

(0.651)

(−13.789)

(0.423)

(−12.247)

N

40

343

40

343

40

343

R2

0.338

0.600

0.226

0.665

0.249

0.667

adj.R2

0.218

0.593

0.085

0.659

0.112

0.661

PanelB:European(EURO)andnon-European(NEURO)countries.

ModelsEURO

NEURO

EURO

NEURO

EURO

NEURO

VariablesFD2020

FD2020

FD2021

FD2021

FD2022

FD2022

GAIF0.012

0.020***

0.029*

0.016***

0.028

0.015***

(0.710)

(3.644)

(1.886)

(2.913)

(1.565)

(2.732)

ControlvariablesYes

Yes

Yes

Yes

Yes

Yes

Constant−1.407***

−0.497**

−0.696**

−1.719***

−1.675***

−2.480***

(−5.041)

(−2.154)

(−2.327)

(−13.504)

(−5.367)

(−13.873)

N85

298

85

298

85

298

R20.563

0.607

0.664

0.642

0.593

0.667

adj.R20.529

0.599

0.638

0.635

0.561

0.660

PanelC:Latin&northAmerica(L&NA)andothers.

ModelsL&NA

Others

L&NA

Others

L&NA

Others

VariablesFD2020

FD2020

FD2021

FD2021

FD2022

FD2022

GAIF0.002

0.061***

0.001

0.064***

0.001

0.070***

(0.500)

(4.197)

(0.402)

(4.839)

(0.340)

(4.572)

ControlvariablesYes

Yes

Yes

Yes

Yes

Yes

Constant−3.990***

−0.959***

−2.801***

−0.076

−1.466***

−0.920***

(−14.387)

(−3.137)

(−43.830)

(−0.233)

(−4.192)

(−2.685)

N253

130

253

130

253

130

R20.704

0.378

0.934

0.495

0.581

0.348

adj.R20.697

0.348

0.932

0.470

0.571

0.316

Note:Significantat*p<0.1,**p<0.05,***p<0.01.

significanteffectonFDinallthreeyears,withcoefficientsrangingfrom0.015to0.020.Incontrast,theimpactofGAIFinEuropeancountriesislesssignificant,showingmoderateeffectsonlyin2021(0.029,p<0.1).InPanelC(Latin&NorthAmericavs.othercountries),GAIFhasaconsistentlystrongandsignificantimpactonFDin"Other"regions,withcoefficientsaround0.061to0.070acrossallyears.InLatin&NorthAmerica,however,GAIFshowsnosignificanteffectonFD.Overall,theheterogeneityanalysishighlightsregionaldifferences,withGAIFshowingastrongerimpactonfinancialdevelopmentinAsianandnon-Europeancountriescomparedtootherregions.

4.Conclusion

OurstudyunderscoresthesignificantroleofGAIFinadvancingfinancialdevelopmentacross2020,2021,and2022,withrobustevidencefrom2SLSanalysisaffirmingGAIF’spositiveimpactonFD.Notably,weobservesubstantialregionalheterogeneity,asGAIFexertsastrongerinfluenceonFDinAsianandnon-EuropeancountriescomparedtoEuropeandtheAmericas.ThisregionaldisparitysuggeststhatGAIFismoreeffectiveinenhancingfinancialsystemsinsomeareas,whileotherfactorsmaydriveFDinothers.Thesefindingshavemultifacetedpolicyimplications.Policymakers,banks,financialinstitutions,andfinancialregulatorsshouldcollaboratetocreateconduciveenvironmentsforGAIstartupstoenhancefinancialdevelopment.InAsiananddevelopingregions,regulatorybodiesshouldfosterfavorableconditionsbyprovidingfinancialincentives,enhancinginfrastructure,andestablishingsupportiveregulatoryframeworks.Additionally,financialinstitutionsandbanksshouldactivelyinvestinandcollaboratewithGAIstartupstodriveinnovationinfinancialservices.ForEuropean,LatinAmerican,andNorthAmericanmarkets,financialregulatorsshouldfocusonintegratingGAIintoexistingfinancialframeworks,encouragingpartnershipsbetweenGAIfirmsandtraditionalfinancialentities.ThisapproachcouldhelpovercomelimitationsintheseregionswhereGAIFhaslessimpact.Furthermore,banksandfinancialin-stitutionsintheseareascanplayapivotalrolebyofferingtargetedfinancialproductsandservicesthatalignwithGAI-drivenin-novations.Finally,financialregulatorsacrossallregionsshouldaddressethicalconcerns—suchasbiasesinAI-drivendecision-making,privacyrisks,andpotentialjobdisplacement—bydevelopingframeworksthatpromotefairnessandtransparency.PubliccampaignsandinitiativestopromoteGAIcanalsoincreasevisibilityandattractinvestors,helpingdrivesustainablefinancialdevelopmentacrossdiversecontexts.Limitationsofthisstudyandrecommendationsforfutureresearchareoutlinedin

TableA2

(seeappendix).

A.B.Siddiketal.FinanceResearchLetters72(2025)106519

7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论