




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3节
正方形的性质与判定(一)九年级数学上册•北师大版第一章
特殊平行四边形1.掌握正方形的定义及性质2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别(重点)3.会应用正方形的性质解决相关证明及计算问题(难点)情境&导入观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.你还能举出其他的例子吗?图中的四边形都是特殊的平行四边形.观察这些特殊的平行四边形,你能发现它们有什么样的共同特征?情境&导入你能总结出正方形的定义吗?正方形的定义有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。平行四边形一组邻边相等一个角是直角正方形正方形的对角线相等并且互相垂直平分.正方形的四个角都是直角,四条边相等.正方形的定义ABCD填一填:角:
边:
对角线:
对称性:
四个角都是直角.四条边相等.对角线相等且互相垂直平分.aaaa轴对称图形(4条对称轴).1.正方形的四个角都是直角,四条边相等. 2.正方形的对角线相等且互相垂直平分.定理已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.ABCD证明:∵四边形ABCD是正方形. ∴∠A=90°,AB=AC(正方形的定义). 又∵正方形是平行四边形. ∴正方形是矩形(矩形的定义),
正方形是菱形(菱形的定义). ∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD.定理:正方形的四个角都是直角,四条边相等.已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.ABCDO证明:∵正方形ABCD是矩形,
∴AO=BO=CO=DO.
∵正方形ABCD是菱形.
∴AC⊥BD.正方形的性质定理:正方形的对角线相等并且互相垂直平分.正方形对角线边边对角线对角线角对边平行且相等相互平分相等四个角相等都是90°相互垂直且平分对角四边相等对称性轴对称图形(4条对称轴)例1.如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.解:BE=DF,且BE⊥DF.理由如下:(1)∵四边形ABCD是正方形.∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).∴∠DCF=180°-∠BCE=180°-90°=90°.∴∠BCE=∠DCF.又∵CE=CF.∴△BCE≌△DCF.∴BE=DF.(2)延长BE交DF于点M(如图).∵△BCE≌△DCF,∴∠CBE=∠CDF.∵∠DCF=90°,∴∠CDF+∠F=90°.∴∠CBE+∠F=90°.∴∠BMF=90°.∴BE⊥DF.平行四边形、菱形、矩形、正方形之间有么关系?你能用一个你喜欢的方式直观地示它们之间的关系吗?与同伴交流.平行四边形矩形菱形正方形正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.例2.如图,在正方形ABCD中,E为CD上一点,F为BC
延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.(1)证明:∵四边形ABCD是正方形,∴BC=DC,∠BCE=∠DCF=90°.又∵CE=CF,∴△BCE≌△DCF.(2)解:∵△BCE≌△DCF,∠BEC=60°,∴∠DFC=∠BEC=60°.∵CE=CF,∠ECF=90°,∴∠CFE=45°.∴∠EFD=∠DFC-∠CFE=60°-45°=15°.例3.如图,在正方形ABCD中,ΔBEC是等边三角形,求证:∠EAD=∠EDA=15°
.证明:∵
ΔBEC是等边三角形,∴BE=CE=BC,∠EBC=∠ECB=60°,∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=∠DCB=90°,∴AB=BE=CE=CD,∠ABE=∠DCE=30°,∴△ABE,△DCE是等腰三角形,∴∠BAE=∠BEA=∠CDE=∠CED=75°,∴∠EAD=∠EDA=90°-75°=15°.练习&巩固1.正方形具有而菱形不一定具有的性质()
A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等练习&巩固2.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是(
)A.3
B.4
C.5
D.6练习&巩固3.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 励志诗歌合集
- 秘书年终工作总结
- 微软软件购买合同
- 学校供餐服务合同
- 2024年份2月份装修合同石膏板吊顶接缝处防开裂工艺
- 广告拍摄合同范本
- 山东省猪肉入市场厂挂钩合同
- 2025【英文合同】英文租赁合同范本
- 90代土地出让合同标准文本
- 增强财务创新能力的工作安排计划
- 2024版影视作品授权配音服务合同3篇
- 2024年北京大学强基计划物理试题(附答案)
- 《多变的镜头》课件 2024-2025学年人美版(2024)初中美术七年级上册
- Oracle数据库维保服务方案
- 2024智慧园区系统建设规范
- 传感器技术-武汉大学
- GB/T 44413-2024城市轨道交通分类
- PC信息系统运行维护服务方案
- 四川长虹电子控股集团有限公司招聘笔试题库2024
- 基于单元主题的小学英语跨学科学习活动的实践与研究
- 新生儿肺炎课件
评论
0/150
提交评论