




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3数学归纳法第一课时对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法,叫归纳法。归纳法{
完全归纳法不完全归纳法由特殊一般特点:a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d1+3+5+…+(2n-1)=n2(n∈N*)思考:如何证明与正整数有关的命题?数学归纳法的概念:证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性:(1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(kN*
,kn0)时命题成立,
证明当n=k+1时命题也成立完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立。这种证明方法叫做数学归纳法。验证n=n0时命题成立若当n=k(kn0)时命题成立,
证明当n=k+1时命题也成立命题对从n0开始的所有正整数n都成立。注意
1.用数学归纳法进行证明时,要分两个步骤,两个步骤缺一不可.2(1)(归纳奠基)是递推的基础.找准n0(2)(归纳递推)是递推的依据n=k时命题成立.作为必用的条件运用,而n=k+1时情况则有待利用假设及已知的定义、公式、定理等加以证明
证明:①当n=1时,左边=1,右边=1,等式成立。
②假设n=k(k∈N,k≥1)时等式成立,即:
1+3+5+……+(2k-1)=k2,
那么,当n=k+1时,有
1+3+5+……+(2k-1)+[2(k+1)-1]=k2+2k+1=(k+1)2,所以当n=k+1时等式也成立.
由①和②可知,对n∈N,等式成立.
例2、用数学归纳法证明1+3+5+……+(2n-1)=n2
(n∈N).
请问:第②步中“当n=k+1时”的证明可否改换为:1+3+5+……+(2k-1)+[2(k+1)-1]=1+3+5+……+(2k-1)+(2k+1)==(k+1)2?为什么?例3:用数学归纳法证明练习、求证:(n+1)(n+2)…(n+n)=2n•1•3•…
•(2n-1)证明:①n=1时:左边=1+1=2,右边=21•1=2,左边=右边,等式成立。②假设当n=k((k∈Nk≥1)时有:
(k+1)(k+2)…(k+k)=2k•1•3•…•(2k-1),
当n=k+1时:左边=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
=(k+1)(k+2)(k+3)…(k+k)•
=2k•1•3•…•(2k-1)(2k+1)•2=2k+1•1•3•…•(2k-1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生足疗店创业计划
- 图书馆读书课件
- 五人联合影视制作2025知识产权归属协议
- 关于篮球的课件
- 地理-辽宁省协作校2024-2025学年2025届高三第一次模拟考试试题(协作校一模)试题和答案
- 广告设计专业知识讲座
- 废气处理培训课件
- 第2章 图形设计的基本原理
- 幼儿知识阅读
- 护士评职称个人述职报告
- 2025华能陕西新能源分公司招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 2025春《中考解读·英语》 课件 专题四 短文填空;专题五 读写综合
- 人工智能驱动的科学研究第五范式:演进、机制与影响
- 2024 北京公务员考试笔试真题
- 《眼应用光学基础》课件
- DB3308-T 144-2023 乡镇(街道)法治指数评价规范
- 【物理课件】游标卡尺 千分尺的使用课件
- 移动场景下TCP自适应控制-洞察分析
- 某化工企业部门职责与岗位说明书
- 2024年05月青海青海省农商银行(农信社)系统招考专业人才笔试历年参考题库附带答案详解
- DB33T 841-2023 桥梁钢结构防腐蚀工程施工工艺及质量验收规范
评论
0/150
提交评论