专题09 三角形中位线定理 带解析_第1页
专题09 三角形中位线定理 带解析_第2页
专题09 三角形中位线定理 带解析_第3页
专题09 三角形中位线定理 带解析_第4页
专题09 三角形中位线定理 带解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年苏科版八年级数学下册精选压轴题培优卷专题09三角形中位线定理一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•雨花区校级月考)如图,四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CB上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小 C.线段EF的长不变 D.线段EF的长与点P的位置有关解:如图,连接AR,∵E、F分别是AP、RP的中点,∴EF是△APR的中位线,∴EF=AR,∵点R不动,∴AR大小不变,∴线段EF的长不变,故选:C.2.(2分)(2022秋•二道区校级期末)如图,在△ABC中,AB=BC=13,BD平分∠ABC交AC于点D,点F在BC上,且BF=5,连接AF,E为AF的中点,连接DE,则DE的长为()A.3 B.4 C.5 D.6解:∵BC=13,BF=5,∴FC=BC﹣BF=13﹣5=8,∵AB=BC,BD平分∠ABC,∴AD=DC,∵AE=EF,∴DE是△AFC的中位线,∴DE=FC=×8=4.故选:B.3.(2分)(2022春•横县期中)如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AC=9,DM=2,则AB等于()A.4 B.5 C.6 D.8解:如图,延长BD与AC相交于点F,∵M为BC中点,∴DM是△BCF的中位线,∴DM=CF=2.∴CF=4.∵AD平分∠BAC,BD⊥AD,∴AF=AB,BD=DF,∵AC=9,∴CF=AC﹣AF=AC﹣AB=9﹣AB=4,∴AB=5.故选:B.4.(2分)(2022春•新城区校级期末)如图,在△ABC中,∠ABC=90°,AB=4,BC=3,若DE是△ABC的中位线,延长DE,交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.4 B. C. D.5解:在Rt△ABC中,AC===5,∵DE是△ABC的中位线,∴DE=BC=1.5,DE∥BC,EC=AC=2.5,∴∠EFC=∠FCM,∵CF是∠ACM的平分线,∴∠ECF=∠FCM,∴∠EFC=∠ECF,∴EF=EC=2.5,∴DF=DE+EF=1.5+2.5=4,故选:A.5.(2分)(2022春•乐陵市期末)数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试作了一种辅助线,如图1,2.其中辅助线作法能够用来证明三角形中位线定理的是()图1为小丽的辅助线作法:延长DE到F,使EF=DE,连接DC、AF、FC.图2为小亮的辅助线作法:过点E作GE∥AB,过点A作AF∥BC,GE与AF交于点F.A.小丽和小亮的辅助线作法都可以 B.小丽和小亮的辅助线作法都不可以 C.小丽的辅助线作法可以,小亮的不可以 D.小亮的辅助线作法可以,小丽的不可以解:小丽的作法:∵AE=EC,DE=EF,∴四边形ADCF为平行四边形,∴CF=AD,CF∥AD,∵AD=DB,∴DB=CF,∴四边形DBCF为平行四边形,∴DE=BC,DE∥BC,能够用来证明三角形中位线定理;小亮的作法:∵GE∥AB,AF∥BC,∴四边形ABGF为平行四边形,∴AB=FG,AF=BG,∵DB=AB,EG=FG,∴BD=EG,∴四边形DBGE为平行四边形,∴DE=BG,DE∥BG,∵AF∥BC,∴∠AFE=∠CGE,在△AEF和△CEG中,,∴△AEF≌△CEG(AAS),∴AF=GC,∴BG=GC,∴DE=BC,能够用来证明三角形中位线定理,故选:A.6.(2分)(2022春•通川区期末)如图,在△ABC中,M是BC边的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为()A.8 B.10 C.12 D.14解:如图,延长BN交AC于点D,∵AN平分∠BAC,∴∠BAN=∠DAN,∵BN⊥AN,∴∠ANB=∠AND=90°,在△ANB与△AND中,,∴△ANB≌△AND(ASA),∴AB=AD=8,BN=DN,又∵M是BC边的中点,∴MN是△BCD的中位线,∴MN=CD,∵MN=2,∴CD=4,∴AC=AD+CD=8+4=12,故选:C.7.(2分)(2022春•禅城区期末)已知:△ABC中,D、E、F分别是边BC、CA、AB的中点,则四边形AFDE的周长等于()A.AB+AC B.BA+BC C.CA+CB D.△ABC的周长解:如图1,∵D、E、F分别是边BC、CA、AB的中点,∴DF=AC,DE=AB,AF=AB,AE=AC,∴四边形AFDE的周长为AF+DF+CE+AE=AB+AC+AB+AC=AB+AC,故选:A.8.(2分)(2022春•青山区期中)如图,在Rt△ABC中∠ACB=90°,∠A=30°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC,若EF=4,则DE的长为()A.4 B. C.2 D.解:如图,连接DC,在Rt△ABC中∠ACB=90°,∠A=30°,点D是边AB的中点,∴DC=AB,BC=AB,∴BC=DC,∵点D,E分别是边AB,AC的中点,∴DE∥CF,DE=BC,∵CF=BC,∴DE=CF,∴四边形DEFC是平行四边形,∴DC=EF=4,∴BC=4,∴DE=×4=2.故选:C.9.(2分)(2021春•金坛区期中)如图,已知四边形ABCD中,AC⊥BD,AC=6,BD=8,点E、F分别是边AD、BC的中点,连接EF,则EF的长是()A. B.5 C. D.10解:如图,取AB的中点G,连接EG、FG,∵E、F分别是边AD、CB的中点,∴EG∥BD且EG=BD=×8=4,FG∥AC且FG=AC=×6=3,∵AC⊥BD,∴EG⊥FG,∴EF===5.故选:B.10.(2分)(2022春•高唐县期末)如图,△ABC中,∠BAD=∠CAD,BE=CE,AD⊥BD,DE=,AB=4,则AC的值为()A.6 B. C.7 D.8解:如图,延长BD,交AC于F,∵AD⊥BD,∴∠ADB=∠ADF=90°,在△ABD和△AFD中,,∴△ABD≌△AFD(ASA),∴BD=DF,AF=AB=4,∵BE=CE,∴CF=2DE=3,∴AC=AF+CF=4+3=7,故答案为:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2020春•凯里市期末)如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,若,则AB=6.解:∵点E、F分别是AC、DC的中点,∴EF是△ACD的中位线,∴AD=2EF=3,∵CD是△ABC的中线,∴AB=2AD=6,故答案为:6.12.(2分)(2022春•南岗区校级期中)如图,△ABE中,∠B=60°,D为AB上一点,C为BE延长线上一点,连接CD、AE,取AE中点F,取CD中点G,连接FG,若AD=8,CE=10,则FG=.解:连接AC,取AC中点M,连接MF、MG,作GN⊥MF于N.∵G为CD的中点,∴MG∥AD,MF∥BC,MF=,MG===4,∵∠B=60°,∴∠FMG=60°,∴∠MGN=30°,∴MN===2,NG==2,∴NF=MF﹣MN=5﹣2=3,∴FG===.13.(2分)(2022春•兴城市期末)如图,△ABC中,D、F分别是AC、BC的中点,E在DF上,且BE⊥CE,若AB=8,BC=6,则DE=1.解:∵D、F分别是AC、BC的中点,∴DF是△ABC的中位线,∴DF=AB=×8=4,∵BE⊥CE,∴∠BEC=90°,在Rt△BEC中,∠BEC=90°,F是BC的中点,∴EF=BC=3,∴DE=DF﹣EF=4﹣3=1,故答案为:1.14.(2分)(2022•华蓥市模拟)如图,在边长为a的等边△ABC中,分别取△ABC三边的中点A1,B1,C1,得△A1B1C1;再分别取△A1B1C1三边的中点A2,B2,C2,得△A2B2C2;这样依次下去…,经过第2022次操作后得△A2022B2022C2022,则△A2022B2022C2022的面积为a2.解:∵点A1、B1分别是CA、CB的中点,∴点A1B1是△ABC的中位线,∴A1B1=AB=a,同理可得:A2B2=A1B1=a,……则A2022B2022=a,∴S=(a)2=a2,故答案为:a2.15.(2分)(2022春•府谷县期末)如图,在▱ABCD中,点E、F分别为AD、DC的中点,过点C作CM⊥AB交AB延长线于M,连接EF,若CD=4,BM=2,CM=6,则EF的长为3.解:连接AC,∵四边形ABCD为平行四边形,∴AB=CD=4,∴AM=AB+BM=4+2=6,∴AC===6,∵点E、F分别为AD、DC的中点,∴EF是△ADC的中位线,∴EF=AC=3,故答案为:3.16.(2分)(2022春•宝应县期末)如图,四边形ABCD中,AB=CD=6,且AB与CD不平行,P、M、N分别是AD、BD、AC的中点,设△PMN的面积为S,则S的范围是0<S≤4.5.解:作ME⊥PN,如图所示,∵P,M,N分别是AD,BD,AC中点,∴PM=AB=3,PN=CD=3,∴S△PMN=PN•ME=1.5ME,∵AB与CD不平行,∴M,N不能重合,∴ME>0.∵ME≤MP=3.∴0<S△≤4.5.故答案是:0<S≤4.5.17.(2分)(2022春•黄陵县期末)如图,点D,E,F分别是△ABC各边的中点,AH是△ABC的高,如果HF=5,则ED的长为5.解:∵AH是△ABC的高,∴∠AHC=90°,∵∠AHC=90°,F是边AC的中点,∴AC=2HF=10,∵D、E分别是△ABC各边的中点,∴DE是△ABC的中位线,∴DE=AC=5.故答案为:5.18.(2分)(2022春•涟水县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN、MN的中点,则DE的最小值是.解:如图,连接CM,∵点D、E分别为CN,MN的中点,∴DE=CM.当CM⊥AB时,CM的值最小,此时DE的值也最小.由勾股定理得:AB===13.∵S△ABC=•AB•CM=•AC•BC,∴CM=.∴DE=CM=.故答案是:.19.(2分)(2021秋•北碚区校级期末)已知在△ABC中,AC=6cm,点D、E分别是AC、BC的中点,连接DE,在DE上有一点F,EF=1cm,连接AF,CF,若AF⊥CF,则AB=8cm.解:在Rt△AFC中,点D是AC的中点,AC=6cm,∴DF=AC=×6=3(cm),∵EF=1cm,∴DE=DF+EF=3+1=4(cm),∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×4=8(cm),故答案为:8cm.20.(2分)(2022•上蔡县模拟)若将三个如图1所示的直角三角形拼成如图2所示的图形,在图2中标记字母,并连接AE,CD,G,H分别为AE,CD的中点,连接GH,如图3所示.若AC=2,则GH的长为.解:根据题意可知:Rt△ABC≌Rt△DEB≌Rt△FCE,∴BC=BC=CE,∴△BCE是等边三角形,∴∠BCE=60°,如图,取CE的中点Q,连接GQ,HQ,过点G作GN⊥HQ于点N,∵G,H分别为AE,CD的中点,∴GQ∥AC,GQ=AC=2=1,∴∠GQC+∠ACQ=180°,∴∠GQC=180°﹣90°﹣60°=30°,∵△ADF是等边三角形,∴∠BAC=60°,∴AB=DE=2AC=4,∵H是CD中点,Q是CE中点,∴HQ∥DE,HQ=DE=4=2,∴∠HQC=∠CEF=90°,∴∠GQH=90°﹣30°=60°,∵GN⊥HQ,GQ=1,∴NQ=GQ=,∴GN=,∴NH=HQ﹣NQ=2﹣=,∴GH===.故答案为:.三.解答题(共8小题,满分60分)21.(6分)(2022春•宁都县期末)如图,AC、BD是四边形ABCD的对角线,E、F分别为AD、BC的中点,G、H分别为BD、AC的中点.请你判断EF与GH的关系,并证明你的结论.解:EF与GH互相平分,理由如下:连接EG、GF、FH、EH,∵E、F分别为AD、BC的中点,G、H分别为BD、AC的中点,∴EG是△ADB的中位线,FH是△ACB的中位线,∴EG=AB,EG∥AB,FH=AB,FH∥AB,∴EG=FH,EG∥FH,∴四边形EGFH为平行四边形,∴EF与GH互相平分.22.(6分)(2022春•海淀区校级期中)如图,在△ABC中,∠ABC=90°,在边AC上截取AD=AB,连接BD,过点A作AE⊥BD于点E,F是边BC的中点,连接EF.若AB=5,BC=12,求EF的长度.解:在△ABC中,∠ABC=90°,AB=5,BC=12,则AC===13,∵AD=AB=5,∴DC=AC﹣AD=13﹣5=8,∵AD=AB,AE⊥BD,∴BE=ED,∵BF=FC,∴EF=DC=4.23.(7分)(2021秋•桓台县期末)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE∥AB,且PE=AB=3,PF∥CD且PF=CD=4.又∵∠ABD=30°,∠BDC=120°,∴∠EPD=∠ABD=30°,∠DPF=180°﹣∠BDC=60°,∴∠EPF=∠EPD+∠DPF=90°,在直角△EPF中,由勾股定理得到:EF===5,即EF=5;(2)证明:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,∴PE∥AB,且PE=AB,PF∥CD且PF=CD.∴∠EPD=∠ABD,∠BPF=∠BDC,∴∠DPF=180°﹣∠BPF=180°﹣∠BDC,∵∠BDC﹣∠ABD=90°,∴∠BDC=90°+∠ABD,∴∠EPF=∠EPD+∠DPF=∠ABD+180°﹣∠BDC=∠ABD+180°﹣(90°+∠ABD)=90°,∴PE2+PF2=(AB)2+(CD)2=EF2,∴AB2+CD2=4EF2.24.(8分)(2022春•西城区校级期中)如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,写出线段AB、AC、EF的数量关系,并证明你的结论.(1)证明:如图1中,∵AE⊥BE,∴∠AED=∠AEB=90°,∴∠BAE+∠ABE=90°,∠DAE+∠ADE=90°,∵∠BAE=∠DAE,∴∠ABE=∠ADE,∴AB=AD,∵AE⊥BE,∴BE=DE,∵BF=FC,∴EF=DC==(AC﹣AB).(2)结论:EF=(AB﹣AC),理由:如图2中,延长AC交BE的延长线于点P.∵AE⊥BP,∴∠AEP=∠AEB=90°,∴∠BAE+∠ABE=90°,∠PAE+∠APE=90°,∵∠BAE=∠PAE,∴∠ABE=∠APE,∴AB=AP,∵AE⊥BD,∴BE=PE,∵BF=FC,∴EF=PC=(AP﹣AC)=(AB﹣AC).25.(8分)(2022春•抚远市期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE的长.解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE=CF=×4=2.26.(8分)(2022春•西峰区校级月考)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=DB.∵AD是BC边上的中线,∴DC=DB,∴AF=DC;(2)解:四边形ADCF是矩形.证明:连接DF,由(1)得AF=DB,AF∥DB,∴四边形ABDF是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,由(1)得AF=DC,AF∥DC,∴四边形ADCF是平行四边形,∴四边形ADCF是矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论