![2025年人教版高一数学上册阶段测试试卷含答案_第1页](http://file4.renrendoc.com/view11/M03/3C/00/wKhkGWefHs-AEF-jAADUzz-Iuyc116.jpg)
![2025年人教版高一数学上册阶段测试试卷含答案_第2页](http://file4.renrendoc.com/view11/M03/3C/00/wKhkGWefHs-AEF-jAADUzz-Iuyc1162.jpg)
![2025年人教版高一数学上册阶段测试试卷含答案_第3页](http://file4.renrendoc.com/view11/M03/3C/00/wKhkGWefHs-AEF-jAADUzz-Iuyc1163.jpg)
![2025年人教版高一数学上册阶段测试试卷含答案_第4页](http://file4.renrendoc.com/view11/M03/3C/00/wKhkGWefHs-AEF-jAADUzz-Iuyc1164.jpg)
![2025年人教版高一数学上册阶段测试试卷含答案_第5页](http://file4.renrendoc.com/view11/M03/3C/00/wKhkGWefHs-AEF-jAADUzz-Iuyc1165.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版高一数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、已知则值为()A.B.—C.D.—2、【题文】下列函数与有相同图象的一个函数是()A.B.C.D.3、【题文】下列函数中,在上为单调递减的偶函数是()A.B.C.D.4、已知则的值等于()A.B.C.2D.5、下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=﹣x3C.f(x)=﹣tanxD.f(x)=6、等差数列{an}中,a1<0,S9=S12,若Sn有最小值,则n=()A.10B.10或11C.11D.9或107、函数的零点所在的大致区间是()A.(1,2)B.(2,3)C.D.评卷人得分二、填空题(共6题,共12分)8、设函数f(x)对任意x,y满足f(x+y)=f(x)+f(y),且f(2)=4,则f(-1)的值为____.9、因式分解:=______________.10、若函数同时满足:(ⅰ)对于定义域内的任意恒有(ⅱ)对于定义域内的任意当时,恒有则称函数为“二维函数”.现给出下列四个函数:①②③④其中能被称为“二维函数”的有_____________(写出所有满足条件的函数的序号).11、【题文】若对任意>0,≤恒成立,则的取值范围是____12、如果α与β为同一象限角,则cos(α-β)=______.13、在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则=______.评卷人得分三、证明题(共8题,共16分)14、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.15、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.16、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.17、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.18、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.19、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.20、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.21、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、计算题(共3题,共24分)22、已知(a>b>0)是方程x2-5x+2=0的两个实根,求的值.23、已知t1、t2是二次函数s=-3t2+6t+f的图象与x轴两交点的横坐标,且x=10t1,y=10t2,那么y与x间的函数关系式为____,其函数图象在第____象限内.24、(2009•瑞安市校级自主招生)如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是____.评卷人得分五、综合题(共4题,共32分)25、已知:甲;乙两车分别从相距300(km)的M、N两地同时出发相向而行;其中甲到达N地后立即返回,图1、图2分别是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)试求线段AB所对应的函数关系式;并写出自变量的取值范围;
(2)当它们行驶到与各自出发地距离相等时,用了(h);求乙车的速度;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.26、先阅读下面的材料再完成下列各题
我们知道,若二次函数y=ax2+bx+c对任意的实数x都有y≥0,则必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,则△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,则△=b2-4ac<0.
(1)求证:(a12+a22++an2)•(b12+b22++bn2)≥(a1•b1+a2•b2++an•bn)2
(2)若x+2y+3z=6,求x2+y2+z2的最小值;
(3)若2x2+y2+z2=2;求x+y+z的最大值;
(4)指出(2)中x2+y2+z2取最小值时,x,y,z的值(直接写出答案).27、已知关于x的方程(m-2)x2+2x+1=0①
(1)若方程①有实数根;求实数m的取值范围?
(2)若A(1,0)、B(2,0),方程①所对应的函数y=(m-2)x2+2x+1的图象与线段AB只有一个交点,求实数m的取值范围?28、如图,由矩形ABCD的顶点D引一条直线分别交BC及AB的延长线于F,G,连接AF并延长交△BGF的外接圆于H;连接GH,BH.
(1)求证:△DFA∽△HBG;
(2)过A点引圆的切线AE,E为切点,AE=3;CF:FB=1:2,求AB的长;
(3)在(2)的条件下,又知AD=6,求tan∠HBC的值.参考答案一、选择题(共7题,共14分)1、C【分析】试题分析:.考点:诱导公式.【解析】【答案】C2、D【分析】【解析】
试题分析:值域为A错误;定义域为B错误;定义域为C错误;与有相同图象.
考点:相同函数定义.【解析】【答案】D3、A【分析】【解析】略【解析】【答案】A4、A【分析】【解答】因为,所以,
或由及知
故选A.5、B【分析】【解答】解:A.由﹣x≥0;解得x≤0,则函数的定义域为(﹣∞,0],关于原点不对称,故函数为非奇非偶函数,不满足条件.
B.f(x)=﹣x3为奇函数;则定义域上为减函数,满足条件.
C.f(x)=﹣tanx为奇函数;在定义域上不单调,不满足条件.
D.f(x)=为奇函数;在定义域上不单调,不满足条件.
故选:B
【分析】根据函数奇偶性和单调性的性质分别进行判断即可.6、B【分析】【解答】解:∵等差数列{an}中,a1<0,S9=S12;
∴9a=12a1+
解得a1=﹣10d;
∴Sn=na1+=n2﹣=﹣.
∵Sn有最小值;
∴n=10或n=11.
故选:B.
【分析】由等差数列通项公式得a1=﹣10d,由此求出Sn=n2﹣利用配方法能求出Sn有最小值时,n的值的求法.7、B【分析】【解答】依次将选项中的端点值代入函数判断函数值的正负,
所以函数的零点所在的大致区间是
【分析】应用函数的零点存在定理可以判断零点所在的大致区间,但是判断不出零点的个数,还需借助函数的图象进行判断.二、填空题(共6题,共12分)8、略
【分析】
∵f(x)对任意x;y满足f(x+y)=f(x)+f(y);
∴令x=y=0得:f(0)=f(0)+f(0);
∴f(0)=0;
再令y=-x代入得:f(0)=f(x)+f(-x)=0;
∴f(-x)=-f(x);
∴f(x)为奇函数.
∵f(2)=f(1+1)=f(1)+f(1)=4;
∴f(1)=2;又f(x)为奇函数;
∴f(-1)=-f(1)=-2.
故答案为:-2.
【解析】【答案】通过赋值法求得f(0)=0;f(-x)=-f(x),说明f(x)为奇函数,通过f(1+1)=f(1)+f(1)=4,即可求得f(1),从而可求得f(-1).
9、略
【分析】试题分析:由提取公因式法和公式法分解因式得考点:分解因式的方法【解析】【答案】10、略
【分析】【解析】试题分析:首先明确二维函数的定义,要满足函数是奇函数,同时定义域内递减函数,因此分析函数①正切函数满足奇函数,但是在定义域内不是递减的,故不是二维函数;②由于f(-x)=因此是奇函数,同时利用单调性的性质可知,函数不是递减函数,不满足题意;③中是非奇非偶函数,不符合题意;④当当故可知是奇函数,同时在定义域内每一段都是减函数,同时在x=0时,函数值为零,符合函数递减性,故④考点:本试题考查了新定义的理解和运用。【解析】【答案】④11、略
【分析】【解析】略【解析】【答案】12、略
【分析】解:∵α与β为同一象限角;
∴α与β为同为第二象限角;
∴cosα=-sinβ=
∴cos(α-β)=cosαcosβ+sinαsinβ=-×(-)+×=
故答案为:.
根据所给的角的范围和角的函数值;利用同角的三角函数之间的关系,写出角的函数值,用两角差的余弦公式求出结果.
本题考查两角差的余弦公式,在解题过程中关键是根据所给的角的范围求出要用的函数值,本题是一个角的变换问题.【解析】13、略
【分析】解:∵
设OC与AB交于D(x;y)点。
则:AD:BD=1:5
即D分有向线段AB所成的比为
则
解得:
∴
又∵||=2
∴=(-)
故答案为:(-)
本题考查的知识点是线段的定比分点;处理的方法是,根据三角形内角平分线定理,求出OC所在直线分有线向量AB所成的比.然后代入定比分点公式求出OC与AB的交点坐标,再根据向量的模求出答案.
如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.【解析】(-)三、证明题(共8题,共16分)14、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.15、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.16、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.17、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.18、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.19、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.20、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.21、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、计算题(共3题,共24分)22、略
【分析】【分析】先把方程的两根代入程x2-5x+2=0,根据根与系数的关系得出+、的值,然后再代入求的值即可.【解析】【解答】解:∵是方程x2-5x+2=0的两实根;
∴a-5+2=0;
∴b-5+2=0,+=5,=2.
∴原式=[]÷+
=+=+=2•=2•=523、略
【分析】【分析】由于t1、t2是二次函数s=-3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.【解析】【解答】解:∵t1、t2是二次函数s=-3t2+6t+f的图象与x轴两交点的横坐标;
∴t1+t2=2;
而x=10t1,y=10t2;
∴xy=10t1×10t2=10t1+t2=102=100;
∴y=(x>0).
∵100>0;x>0;
∴其函数图象在第一象限内.
故答案为:y=(x>0),一.24、略
【分析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【解析】【解答】解:如图所示;周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.
故答案为:72.五、综合题(共4题,共32分)25、略
【分析】【分析】(1)首先设线段AB所表示的函数的解析式为y=kx+b,根据题意知道函数经过(3,300),(;0)两点,利用待定系数法即可确定函数的解析式和自变量的取值范围;
(2)首先可以判定x=在3<x≤中,然后把x=代入(1)的函数解析式y=-80x+540中可以求出甲所走的路程;同时也知道了乙的路程,最后利用速度公式即可求解;
(3)首先确定依有两次相遇,①当0≤x≤3时,100x+40x=300,②当3<x≤时,(540-80x)+40x=300,分别解这两个方程即可求解.【解析】【解答】解:(1)设线段AB所表示的函数的解析式为y=kx+b;
把(3,300),(,0)代入其中得;
解之得;
∴线段AB所表示的函数解析式为y=-80x+540;
自变量的取值范围为3<x≤;
(2)∵x=在3<x≤中;
∴把x=代入(1)的函数解析式y=-80x+540中;
得y甲=180;
∴乙车的速度为180÷=40km/h;
(3)依题意有两次相遇;
①当0≤x≤3时;100x+40x=300;
∴x=;
②当3<x≤时;(540-80x)+40x=300;
∴x=6;
∴当它们行驶了小时和6小时时两车相遇.26、略
【分析】【分析】(1)首先构造二次函数:f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2),由(a1x+b1)2+(a2x+b2)2++(anx+bn)2≥0,即可得f(x)≥0,可得△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0,整理即可证得:(a12+a22++an2)•(b12+b22++bn2)≥(a1•b1+a2•b2++an•bn)2;
(2)利用(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;又由x+2y+3z=6,整理求解即可求得答案;
(3)利用(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2,又由2x2+y2+z2=2;整理求解即可求得答案;
(4)因为当且仅当==时等号成立,即可得当且仅当x==时,x2+y2+z2取最小值,又由x+2y+3z=6,即可求得答案.【解析】【解答】解:(1)构造二次函数:f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2)≥0;
∴△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0;
即:(a12+a22++an2)•(b12+b22++bn2)≥(a1•b1+a2•b2++an•bn)2;
当且仅当==时等号成立;
(2)根据(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;
∵x+2y+3z=6;
∴14(x2+y2+z2)≥36;
∴x2+y2+z2≥;
∴若x+2y+3z=6,则x2+y2+z2的最小值为;
(3)根据(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2;
∵2x2+y2+z2=2;
∴(x+y+z)2≤2×=5;
∴-≤x+y+z≤;
∴若2x2+y2+z2=2,则x+y+z的最大值为;
(4)∵当且仅当x==时,x2+y2+z2取最小值;
设x===k;
则x=k;y=2k,z=3k;
∵x+2y+3z=6;
∴k+4k+9k=6;
解得:k=;
∴当x2+y2+z2取最小值时,x=,y=,z=.27、略
【分析】【分析】(1)根据若方程为一元一次方程;求出m的值即可,再根据若方程为一元二次方程,利用根的判别式求出即可;
(2)分别从当m-2=0,以及当m-2≠0时分析,得出若方程有两个不等的实根,以及若方程有两个相等的实根,利用根的判别式以及方程的根得出答案.【解析】【解答】解:(1)若方程为一元一次方程;则m-2=0,即m=2;
若方程为一元二次方程;则m-2≠0;
∵关于x的方程(m-2)x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人事档案保管合同经典版(2篇)
- 2025年五金、交电、家电、化工产品购销合同参考模板(2篇)
- 2025年互联网站合作建立合同(2篇)
- 2025年代理记账委托合同样本(2篇)
- 2025年个人房屋维修服务合同简单版(4篇)
- 2025年个人车库车位租赁合同模板(2篇)
- 低温煤炭储存运输协议
- 奢侈品区装修合同范本
- 保健品办公室装修合同
- 博物馆渣土清理合同
- 机器狗:技术成熟性能优越场景刚需放量在即2025
- 2025年村民代表会议讲话稿(3篇)
- (一模)乌鲁木齐地区2025年高三年级第一次质量语文试卷(含答案)
- 2025开工大吉蛇年大吉开门红模板
- 人教版小学英语单词表(按首字母排列)
- GB/T 45006-2024风电叶片用纤维增强复合材料拉挤板材
- 锅炉、压力容器制造质量手册含程序文件-符合TSG07-2019《许可规则》
- 逻辑思维训练500题(带答案)
- 炎症性肠病共识2024
- 《单片机应用技术》课件第1章
- 《中等强国视域下韩国的“新南方政策”研究》
评论
0/150
提交评论