2025年粤人版高一数学上册月考试卷_第1页
2025年粤人版高一数学上册月考试卷_第2页
2025年粤人版高一数学上册月考试卷_第3页
2025年粤人版高一数学上册月考试卷_第4页
2025年粤人版高一数学上册月考试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年粤人版高一数学上册月考试卷211考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、设函数是奇函数,在内是增函数,有则的解集是()A.或B.或C.或D.或2、以点(-5,4)为圆心,且与轴相切的圆的方程是()A.B.C.D.3、函数的零点个数是()A.0B.1C.2D.无数个4、两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定,哪种购物方式比较经济()A.第一种B.第二种C.都一样D.不确定5、将一骰子抛掷两次,所得向上点数分别为m和n,则函数y=x2-2(2m-n)x+1在[6,+∞)上为增函数的概率是()A.B.C.D.评卷人得分二、填空题(共7题,共14分)6、不等式的解集是____.7、f(x)为定义在区间(-2,2)的奇函数,它在区间(0,2)上的图象为如图所示的一条线段,则不等式f(x)-f(-x)>x的解集为____.

8、【题文】已知那么将这三个数从大到小排列为____.9、【题文】若命题“恒成立”是真命题,则实数a的取值范围是____.10、【题文】直线被圆截得的弦长为_____________11、【题文】直线与的位置关系为____________.12、当x<0时,ax>1成立,其中a>0且a≠1,则不等式logax>0的解集是____评卷人得分三、证明题(共9题,共18分)13、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.14、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.15、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.16、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.17、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.18、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.21、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.评卷人得分四、计算题(共2题,共18分)22、把一个六个面分别标有数字1;2,3,4,5,6有正方体骰子随意掷一次,各个数字所在面朝上的机会均相等.

(1)若抛掷一次;则朝上的数字大于4的概率是多少?

(2)若连续抛掷两次,第一次所得的数为m,第二次所得的数为n.把m、n作为点A的横、纵坐标,那么点A(m、n)在函数y=3x-1的图象上的概率又是多少?23、△ABC中,已知∠A、∠B、∠C的对边长分别为a、b、c,∠C=120°,且2b=a+c,求2cot-cot的值.评卷人得分五、解答题(共1题,共5分)24、【题文】如图,E是以AB为直径的半圆弧上异于A;B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC;

(2).设平面ECD与半圆弧的另一个交点为F。

①求证:EF//AB;

②若EF=1,求三棱锥E—ADF的体积参考答案一、选择题(共5题,共10分)1、D【分析】试题分析:函数是奇函数,在内是增函数,又可知:在内也是增函数,且对于不等式当时,必有此时当时,必有此时综合得不等式的解集为或故选择D.考点:函数性质的综合应用.【解析】【答案】D2、A【分析】试题分析:直接求出圆的半径;即可得到满足题意的圆的方程【解析】

以点(-5,4)为圆心,且与x轴相切的圆的半径为:4;所以所求圆的方程为:(x+5)2+(y-4)2=16.故选A考点:直线与圆点评:本题是基础题,考查直线与圆相切的圆的方程的求法,注意求圆的半径是解题的关键【解析】【答案】A3、C【分析】【解答】令=0,求得即函数有2个零点。故选C。4、B【分析】解:设此种商品的价格分别为p1,p2(都大于0);第一种方案每次购买这种物品数量为x>0;第二种方案每次购买这种物品的钱数为y>0.

可得:第一种方案的平均价格为:=第二种方案的平均价格为==当且仅当p1=p2时取等号.

∴第二种购物方式比较经济.

故选:B.

设此种商品的价格分别为p1,p2(都大于0),第一种方案每次购买这种物品数量为x>0;第二种方案每次购买这种物品的钱数为y>0.可得:第一种方案的平均价格为:=第二种方案的平均价格为=利用基本不等式的性质即可得出.

本题考查了基本不等式的性质解决实际问题,考查了推理能力与计算能力,属于中档题.【解析】【答案】B5、B【分析】解:将一骰子抛掷两次;所得向上点数分别为m和n;

基本事件总数N=6×6=36;

∵函数y=x2-2(2m-n)x+1在[6;+∞)上为增函数;

∴2m-n≤6;

36个基本事件中满足2m-n>6的有:

(4;1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),(6,5);

共9个;

∴函数y=x2-2(m-n)x+1在[6;+∞)上为增函数包含的基本事件的个数M=36-9=27;

∴函数y=x2-2(m-n)x+1在[6,+∞)上为增函数的概率p=.

故答案为:.

基本事件总数N=6×6=36,由函数y=x2-2(2m-n)x+1在[6,+∞)上为增函数,得2m-n≤6,由此利用以立事件概率计算公式能求出函数y=x2-2(m-n)x+1在[6;+∞)上为增函数的概率.

本题考查的是概率与函数的综合问题,利用古典概型的特点分别求出基本事件的总数及所求事件包含的基本事件的个数,利用二次函数的性质求解,属于中档题.【解析】【答案】B二、填空题(共7题,共14分)6、略

【分析】

由不等式可得(x+3)(x-1)<0;解得-3<x<1;

故答案为(-3;1).

【解析】【答案】由不等式可得(x+3)(x-1)<0;解此一元二次不等式,求得原不等式的解集.

7、略

【分析】

因为f(x)为奇函数,所以f(x)-f(-x)>x可化为f(x)+f(x)>x,即f(x)>x;

由奇函数的图象关于原点对称,可作出函数f(x)的图象及y=的图象;如图所示:

由图象可求得f(x)=

由解得x=1,由解得x=-1;

结合图象知f(x)>即(x)-f(-x)>x的解集为(-2,-1)∪(0,1).

故答案为:(-2;-1)∪(0,1).

【解析】【答案】f(x)-f(-x)>x可化为f(x)>x,由奇函数的性质作出f(x)的图象,再作出y=x的图象,根据图象求出f(x),y=f(x)与y=x的交点;结合图象即可求出解集.

8、略

【分析】【解析】

试题分析:因为所以因为所以因为所以故正确答案为

考点:对数函数、指数函数的单调性【解析】【答案】9、略

【分析】【解析】

试题分析:命题“恒成立”是真命题,即恒成立.当时,恒成立;当要使恒成立,则需解得综上

故答案为

考点:二次函数恒成立;含参不等式.【解析】【答案】10、略

【分析】【解析】

试题分析:圆心(0,2)到直线的距离所以直线被圆截得的弦长

考点:直线与圆的位置关系;点到直线的距离公式。

点评:在解直线与圆相交的有关问题时,通常从圆心向弦引垂线,利用弦心距、半径和弦长的一半构成的直角三角形来求解。【解析】【答案】11、略

【分析】【解析】略【解析】【答案】平行12、(0,1)【分析】【解答】解:∵x<0时,ax>1;∴0<a<1;

由logax>0=loga1;得0<x<1.

∴不等式logax>0的解集是(0;1).

故答案为:(0;1).

【分析】由已知结合指数函数的性质可得a的范围,进一步求解对数不等式得答案.三、证明题(共9题,共18分)13、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.14、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.15、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.16、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.17、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.18、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.19、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.20、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.21、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.四、计算题(共2题,共18分)22、略

【分析】【分析】(1)让大于4的数的个数除以数的总数即为所求的概率;

(2)列举出所有情况,看点A(m、n)在函数y=3x-1的图象上的情况数占总情况数的多少即可.【解析】【解答】解:(1)依题意可知:随意掷一次正方体骰子,面朝上的数可能出现的结果有1、2、3、4、5、6共6种,而且它们出现的可能性相等.满足数字大于4(记为事件A)的有2种.所以P(A)=

(2)依题意列表分析如下:

。第二次n第

m

1234561(11)(12)(13)(14)(15)(16)(16)2(21)(22)(23)(24)(25)(26)(26)3(31)(32)(33)(34)(35)(36)(36)4(41)(42)(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论