人工智能:复杂算法与有效的数据保护监督-落实数据主体权利_第1页
人工智能:复杂算法与有效的数据保护监督-落实数据主体权利_第2页
人工智能:复杂算法与有效的数据保护监督-落实数据主体权利_第3页
人工智能:复杂算法与有效的数据保护监督-落实数据主体权利_第4页
人工智能:复杂算法与有效的数据保护监督-落实数据主体权利_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SUPPORTPOOL

OFEXPERTSPROGRAMME

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision

Effectiveimplementationofdatasubjects’rights

byDr.KrisSHRISHAK

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

2

AspartoftheSPEprogramme,theEDPBmaycommissioncontractorstoprovidereportsandtoolsonspecifictopics.

TheviewsexpressedinthedeliverablesarethoseoftheirauthorsandtheydonotnecessarilyreflecttheofficialpositionoftheEDPB.TheEDPBdoesnotguaranteetheaccuracyoftheinformationincludedinthedeliverables.NeithertheEDPBnoranypersonactingontheEDPB’sbehalfmaybeheldresponsibleforanyusethatmaybemadeoftheinformationcontainedinthedeliverables.

Someexcerptsmayberedactedorremovedfromthedeliverablesastheirpublicationwouldunderminetheprotectionoflegitimateinterests,including,interalia,theprivacyandintegrityofanindividualregardingtheprotectionofpersonaldatainaccordancewithRegulation(EU)2018/1725and/orthecommercialinterestsofanaturalorlegalperson.

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

3

TABLEOFCONTENTS

Introduction 4

1Challenges 4

2Howtodeleteandunlearn 5

3Whattounlearn 7

4Approximateunlearningverification 8

5ConcernswithMachineUnlearning 8

6LimitingpersonaldataoutputfromgenerativeAI 9

Conclusion 10

Bibliography 11

DocumentsubmittedinMarch2024

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

4

INTRODUCTION

TheGeneraldataProtectionRegulation(GDPR)empowersdatasubjectsthrougharangeofrights.Adatasubjecthastherighttoinformation(Articles12-14),therightofaccess(Article15),therighttorectification(Article16),therighttoerasure(Article17),therighttorestrictprocessing(Article18),therighttodataportability(Article20),therighttoobject(Article21)andtherightnottobesubjecttoadecisionbasedsolelyonautomatedprocessing(Article22).

Thisreportcoverstechniquesandmethodsthatcanbeusedforeffectiveimplementationofdatasubjectrights,specifically,therightstorectificationandtherighttoerasurewhenAIsystemshavebeendevelopedwithpersonaldata.Thisreportaddressestheserightstogetherbecauserectificationinvolveserasurefollowedbytheinclusionofnewdata.Thesetechniquesandmethodsaretheresultofearly-stageresearchbytheacademiccommunity.Improvementsandalternativeapproachesareexpectedtobedevelopedinthecomingyears.

1CHALLENGES

AIsystemsaretrainedondatathatisoftenmemorisedbythemodels(Carlinietal.,2021).Machinelearningmodelsbehavelikelossycompressorsoftrainingdataandtheperformanceofthesemodelsbasedondeeplearningisfurtherattributedtothisbehaviour(Schelter,2020;Tishby&Zaslavsky,2015).Inotherwords,machinelearningmodelsarecompressedversionsofthetrainingdata.Additionally,AImodelsarealsosusceptibletomembershipinferenceattacksthathelptoassesswhetherdataaboutapersonisinthetrainingdataset(Shokrietal.,2017).Thus,implementingtherighttoerasureandrectificationrequiresreversingthememorisationofpersonaldatabythemodel.Thisinvolvesdeletionof(1)thepersonaldatausedasinputfortraining,and(2)theinfluenceofthespecificdatapointsinthetrainedmodel.

Thereareseveralchallengestoeffectivelyimplementtheserights(Bourtouleetal.,2021):

1.Limitedunderstandingofhoweachdatapointimpactsthemodel:Thischallengeisparticularlyprevalentwiththeuseofdeepneuralnetworks.Itisnotknownhowspecificinputdatapointsimpacttheparametersofamodel.Thebestknownmethodsrelyon“influencefunctions”involvingexpensiveestimations(bycomputingsecond-orderderivativesofthetrainingalgorithm)(Cook&Weisberg,1980;Koh&Liang,2017).

2.Stochasticityoftraining:TrainingAImodelsisusuallyperformedbyrandomsamplingofbatchesofdatafromthedataset,randomorderingofthebatchesinhowandwhentheyareprocessed,andparallelisationwithouttime-synchronisation.Allthesemakethetrainingprocessprobabilistic.Asaresult,amodeltrainedwiththesamealgorithmanddatasetcouldresultindifferenttrainedmodels(Jagielskietal.,2023).

3.Incrementaltrainingprocess:Modelsaretrainedincrementallysuchthatanupdaterelyingonspecifictrainingdatapointwillaffectallsubsequentupdates.Inotherwords,updatesinthetrainingprocessdependonallpreviousupdates.Inthedistributedtrainingsettingoffederatedlearning,multipleclientskeeptheirdataandtrainamodellocallybeforesendingtheupdatestoacentralserver.Insuchasetting,evenwhenaclientonlyoncesendsitsupdateandcontributestotheglobalmodelatthecentralserver,thedataandthecontributionofthisclientinfluencesallfutureupdatestotheglobalmodel.

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

5

4.Stochasticityoflearning:Inadditiontothetrainingprocess,thelearningalgorithmisalsoprobabilistic.Thechoiceoftheoptimiser,forexample,forneuralnetworkscanresultinmanydifferentlocalminima(resultoftheoptimisation).Thismakesitdifficulttocorrelatehowaspecificdatapointcontributedtothe“learning”inthemodel.

2HOWTODELETEANDUNLEARN

1.DataCurationandProvenance:EssentialelementstoimplementtherightsinArticles15-17ofGDPRaredatacurationandprovenance.However,thesearenecessarybutnotsufficientforimplementingtheserightscompletelyastheydonotincludeinformationrelatedtohowthedatainfluencedthetrainedmodel.Theseareprerequisitesfortheotherapproachesinthisreport.

2.Retrainingofmodels:Deletingthemodel,removingthepersonaldatarequestedtobeerased,andthenretrainingthemodelwiththerestofthedataisthemethodthatimplementstherightsinArticles16-17oftheGDPReffectively.Forsmallmodels,thismethodworkswell.However,forlargermodels,thetrainingcostisveryexpensiveandoftenalternativeapproachesmightberequired,especiallywhennumerousdeletionrequestsareexpected.Furthermore,thisapproach,andmanyoftheotherapproaches,assumesthatthemodeldeveloperisinpossessionofthetrainingdatasetswhentherequirementtodeleteandretrainarises.

3.Exactunlearning:Toavoidretrainingtheentiremodel,approachestounlearnthedatahavebeenproposed.Despitethegrowingliterature,thereareveryfewunlearningmethodsthatarecurrentlymostlikelytobeeffective.

a.Modelagnosticunlearning:Thismethodisnotdependentonthespecificmachinelearningtechnique.Itistheonlyapproachwhichhasbeenshowntoworkfordeepneuralnetworks.Thisapproacheither(1)reliesonstoringmodelgradients(Wuetal.,2020),or(2)reliesonthemeasurementofsensitivityofmodelparameterstochangesindatasetsusedinfederatedlearning(Taoetal.,2024),or(3)modifiesthelearningprocesstobemoreconducivetounlearning(Bourtouleetal.,2021).

Thelatter,knownasSISA(Sharded,Isolated,Sliced,andAggregated),iscurrentlythebest-knownapproach.Itinvolvesmodifyingthetrainingprocess,butisindependentofspecificlearningalgorithms(Bourtouleetal.,2021).Thisapproachpresetstheorderinwhichthelearningalgorithmisqueriedtoeasetheunlearningprocess.Theapproachcanbedescribedasfollows:

i.Thetrainingdatasetisdividedintomultiple“shards”suchthateachtrainingdatapointispresentinonlyone“shard”.Thisallowsforanon-overlappingpartitionofthedataset.Itisalsopossibletofurther“slice”the“shards”sothatthetrainingismoremodularanddeletioniseasedfurther.

ii.Themodelisthentrainedoneachoftheseshardsorslices.Thislimitstheinfluenceofthedatapointstothesespecificshardsorslices.

iii.Whenarequestforerasureorrectificationarrives,unlearningisperformed,notbyretrainingtheentiremodel,butbyretrainingonlytheshardorslicethathadincludedthe“deleterequested”data.

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

6

Thismethodisflexible.Forinstance,theshardscanbechosensuchthatthemostlikely“deleterequest”dataareinoneshard.Then,fewershardswillneedtoberetrained,assumingthatpersonaldataandnon-personaldataareseparatedaspartofdatacuration.

b.Modelintrinsicunlearning:ThesemethodsaredevelopedforspecificAItechniques.Forinstance,themethodsthataresuitablefordecisiontreesandrandomforestshavebeenshowntobeeffective(Brophy&Lowd,2021)byusinganewapproachtodevelopdecisiontreesandthenrelyingonstrategicthresholdingatdecisionnodesforcontinuousattributes,andathigh-levelrandomnodes.Thenthenecessarystatisticsarecachedatallthenodestofacilitateremovalofspecifictraininginstances,withouthavingtoretraintheentiredecisiontree.

c.Applicationspecificunlearning:Whileexactunlearningisgenerallyexpensiveintermsofcomputationandstorage,someapplicationsandtheiralgorithmsaremoresuitabletoexactunlearning.Specifically,recommendersystemsbasedonk-nearestneighbourmodelsarewellsuitedduetotheiruseofsparseinteractiondata.Suchmodelsarewidelyusedinmanytechniquesincludingcollaborativefilteringandrecentrecommendersystemapproachessuchasnext-basketrecommendation.Usingefficientdatastructures,sparsedataandparallelupdates,personaldatacanberemovedfromrecommendationsystems(Schelteretal.,2023).

4.ApproximateUnlearning:Significantamountoftechnicalliteratureonmachineunlearningfocusesonapproximateunlearning,wherethedataisnotdeleted,butinstead,themodelisadjustedsuchthattheprobabilityoftheinfluenceofthedata,estimatedbasedonproxysignals,onthemodelisreduced.Approximateunlearningislessexpensiveintermsofcomputationandstoragerequirements.

a.Finetuning:Onceamodelistrained,itcanbefinetunedformanypurposesincludingtheapproximateremovaloftheeffectofthedatathathasbeenrequestedtobedeleted(Golatkaretal.,2020;Warneckeetal.,2023).Whenadeletionrequestalongwiththe“removaldataset”(thedatatoberemoved)isreceived,themodelistrainedagainforafewepochsonthis“removaldataset”suchthatthemodel“forgets”it.

b.Influenceunlearning:Approximateunlearningapproacheshavebeenproposedthatrelyonestimatingtheinfluenceofspecificdataonthemodel(Izzoetal.,2021;Koh&Liang,2017).Thisestimationisthenusedtoupdatethemodelforunlearning,whichisakintofinetuning.Usually,theseapproachesalsorequireadditionalmodeltraining.However,toreducethecomputation,itisalsopossibletoprunethemodel(orreducethesize)beforetheunlearningprocess(Jiaetal.,2023).

c.Intentionalmisclassification:Whenarequesttodeletespecificdataaboutapersonisreceived,themodelownerintentionallymisclassifiesthesedatapoints.Thiscanbeachievedwithaccesstothepre-trainedmodelandthedatapointsprovidedbythedatasubjectwiththedeletionrequestbutdoesnotrequireaccesstotherestofthetrainingdataset(Chaetal.,2024).Anotherapproach,saliencyunlearning,tacklestheproblemofunlearningatthelevelofweightsratherthandataormodel.Itreliesonestimatingtheweightsthataremostrelevant(salient)forunlearningbeforedeployingrandomlabelsforthedatatobedeleted(Fanetal.,2024).Thisapproachhasbeenproposedforimageclassificationandgeneration.

d.Parameterdeletion:Anotherapproachtounlearnwithoutdeletingthedatafromthemodelbutremovingitsinfluenceinvolvesstoringalistofdataandparameterupdates

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

duringthetrainingprocess.Whenadeletionrequestarrives,theparameterupdatesareundone(Gravesetal.,2021).Duetotheneedtostoretheparameterupdates,thisapproachhasahighstoragerequirement,especiallyforlargemodels,althoughlessthanthatforexactunlearning.

5.Differentialprivacyandmodelretiringpolicy:Differentialprivacygivesamathematicalguaranteethatthereisaboundonthecontributionofindividualdatapointtothemodelandthatthiscontributionissmall.However,thecontributionisnotzero,

1

thusnecessitating“unlearning”(Chandrasekaranetal.,2021).Oneapproachistocombinedifferentialprivacywithapolicytoperiodicallyretireordeletethemodelandretrainadifferentiallyprivatemodel,insteadofretrainingforeverydeletionrequest.

Whenadeletionrequestisreceived,iftherelevantpersonaldataisinthepossessionofthedatacontroller,thenthedatashouldbedeleted.Themodeldeletionisnotperformedforeveryrequestbecauseitisunclearhowindividualpersonaldatapointsimpactthedifferentiallyprivatemodel.However,oncethereisasufficientlylargenumberofrequests,then,puttogether,thesedatapointswouldaffectthemodel(stillunknownhowexactly),andthusthereisreasonenoughtodeletethemodelandretrainthemodelwithdifferentialprivacy.

3WHATTOUNLEARN

1.Samples:Adeletionrequestforaspecificpieceofinformationorsampleaboutaperson.Methodsdescribedintheprevioussectionhavebeendevelopedforthissetting.

2.Features:Insomeapplications,featuresandlabelsmayholdcertainpersonalcharacteristicsthataretobedeleted.Anapproximateunlearningmethodhasbeenproposedforthispurposebyestimatingtheinfluenceofspecificfeaturesonthemodelparameters(Warneckeetal.,2023).Thismethodcanbeusedtounlearnfeaturesinatrainedmodelforthousandsofdatasubjects.Anotherapproachinvolvesestimatingthecorrelationbetweenfeaturesthatcouldrepresentthepersonalcharacteristicsandthentoprogressivelyunlearnthesefeatures(Guoetal.,2022).Thismethodismostapplicablefordeepneuralnetworksintheimagedomain,forexample,facialrecognitionsystems,wherethedeeperlayersoftheneuralnetworksaresmaller(Nguyenetal.,2022).

3.Class:AIsystemscanbedesignedtoclassifyoutputsintoone,twoormanydifferentclasses.Incertainapplications,thedatatobedeletedisrepresentedasaclassinthetrainedmodel.Insomefacialrecognitionapplications,alldatapointsaboutapersonintheformoffacialimagesbelongtoaparticularclassandifapersonrequestsfortheirpersonaldatatobedeleted,thentheclassificationshouldnotworkforthisperson’sclass.Acoupleofapproximateunlearningmethodsintroducenoisesuchthattheclassificationerrorforthedeletionclassismaximisedandthenthemodelis“repaired”tomaintaintheperformancefortherestofthedata(Chundawatetal.,2023;Tarunetal.,2024).Thesemethodsdonotdeleteallthesamplesassociatedwiththeclass,butinsteadmanipulatethetrainedmodelforthisclassdirectly.

1Itwouldbeimpossibleforamodeltolearnfromthetrainingdataifthecontributioniszero(Bourtouleetal.,2021).

7

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-

Effectiveimplementationofdatasubjects’rights

8

WhenimageclassificationorfacialrecognitiontechnologyisdevelopedbytrainingConvolutionalNeuralNetwork(CNN)modelswithfederatedlearning,theclassisselectivelyprunedbasedonextractingfeaturesintheimagesthatcontributetodifferentclasses(Wangetal.,2022).Thepersonmakingthedeletionrequestlocallyextractsthesefeaturesfortheirimagesandsendsittothecentralserver,whothenprunestheclassfromtheglobalmodel.

4.Client:WhenAIsystemsaredevelopedwithfederatedlearningthatincludescontributionfrommultipleclients,aclient(oraperson)mightrequestthattheirentirecontributiontotheglobalmodelduetotheirlocaldatasetbedeleted.Duetotheincrementaltrainingprocess,onlydeletingtheupdatestotheglobalmodelmadebythisclientisinsufficienttoremovetheinfluenceofthisclient’sdata.AnapproachknownasFedEraserstoreshistoricalparameterupdatesatacentralservertosanitiseallupdatesthatfollowedtheupdatesofthisclient(Liuetal.,2021).Thesanitisationprocessinvolvescollaborativeupdatesfromtheremainingclientswhosecontributionsarestillpartoftheglobalmodel.

4APPROXIMATEUNLEARNINGVERIFICATION

Approximateunlearningmethodshavebeenproposedwiththeclaimthattheyareindistinguishablefromretrainingthemodelfromscratchwithoutthedeleteddata.Theclaimsareusuallybasedonmetricssuchasindistinguishabilitytoahypotheticallymodelretrainedfromscratch,unlearningaccuracy,remainingaccuracyandmembershipinferenceattacks.

Unlearningaccuracyistheaccuracyoftheunlearnedmodelonthedataexpectedtobeforgotten.Remainingaccuracyistheaccuracyoftheunlearnedmodelontheremainingdata.Membershipinferenceattacks(MIAs)areusedinanattempttoextract“deleted”datafromtheupdatedmodel.Iftheprobabilityofsuchextractionisaround50%,thenthe“deletion”istreatedasasuccess.However,MIAisaprivacyattackandrelyingonitfortestingisunreliable.Awell-developedmodelwillnotbesusceptibletoMIA,inwhichcase,MIAcannotbeusedasaproxysignaltotestunlearning.

Furthermore,approximatelearninglacksstrongguarantees.Thesemetricsdonotaddressaverybasicconcern:itispossibletoobtaintwomodelswithsimilarweightsandparameterswithnon-overlappingtrainingdata(Thudietal.,2022).Thatis,removinganinfluenceofaparticularparameterisnotsufficienttohave“deleted”thedataastheinfluencecouldhavebeenfromadifferentdata.Moreover,theassumptionofhavingtounlearnamodelthatisindistinguishablefromretrainingfromscratchitselfmaynotbetherightapproach.Thisisbecauseamodelretrainedfromscratchcouldhavedifferentmodeldistributionsduetothestochasticityoftraining(Goeletal.,2022;Yang&Shami,2020).

5CONCERNSWITHMACHINEUNLEARNING

1.Privacy:Justlikemachinelearning,machineunlearningalsointroducesprivacyconcerns.Membershipinferenceattacks(Shokrietal.,2017)thathavebeenshowntoattackmachinelearningcanalsobeusedagainstmachineunlearning(Chenetal.,2021).Theconcernhereisthatwhenitispossibletoqueryamodeltwice,oncebeforeunlearningandonceafterunlearning,thepersonqueryingcoulddeducewhichdatawasdeleted.

2.Bias:Whendeletionrequestsaremade,minorityclassesaremoreadverselyaffectedbecausethedatasetsintherealworldarenotbalanced.Whenitcomestodatadeletionrequests,noteveryoneisequallylikelytomakesuchrequests.Ithasbeenshownthatthereisacorrelation

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

betweentheunlearningprobabilityandclasslabels(Koch&Soll,2023).Thus,itisimperativethataccuracyofmodelsforsub-categoriesareassessedafterunlearningtoassessforbias.

6LIMITINGPERSONALDATAOUTPUTFROMGENERATIVEAI

Theapproachesdiscussedthusfaraddressapplicationsincludingfacialrecognitiontechnologywherepersonaldataprocessingisconcerned.AIsystemsaresusceptibletoprivacyleakagesandtoadversarialattackssuchasMIA.ThisisalsotrueofgenerativeAIsystems,whichcouldgeneratepersonaldataaspartofitsoutput.TextgenerationAIbasedonlargelanguagemodelshavebeenshowntobemoresusceptibletoMIAthansmallmodels(Carlinietal.,2021).

IngenerativeAIsystems,personaldataisoutputwhenexplicitlyprompted(E.g.,Givemethebirthdateof[personname]).Thesamecantakeplacewithimageandvideogenerationtoolsaswell.Personaldataisalsooutputwhennotexplicitlyprompted.ThesegenerativeAItoolsmakethingsupor“hallucinate”(Maynezetal.,2020)andgeneratefactuallyincorrectcontentthatcouldrevealpersonaldataaboutpeople.E.g.,wheninformationaboutonepersonisaskedandalargelanguagemodeloutputsinformationaboutanotherperson(withtheirname)(D.Zhangetal.,2023).

TheareaofresearchtolimitgenerationofpersonaldatafromgenerativeAIisnew,andmuchlessmaturethanthefieldofmachineunlearning,whichbyitselfisquiteyoung.

1.Modelfinetuning:Inthecaseofdiffusionmodels(e.g.,StableDiffusion),amethodhasbeenproposedtofinetunethemodelsuchthatspecificconceptsarenotoutputintheimages(Gandikotaetal.,2023).Thismethodeliminatesvisualconceptssuchasspecificartisticstyles,nudityandcertainobjects.Asimilarapproachcanbeusedtopreventgenerationofimageswithspecificpersonalcharacteristics(E.J.Zhangetal.,2023).Anotherapproachknownas“selectiveamnesia”appliescontinuouslearningtoforgetconceptsfromgenerativemodelsbasedonvariationalautoencodersanddiffusionmodels(Heng&Soh,2024).

2.Dataredaction:Avariantofmodelfinetuningusesdataandclassredactiontechniquestolimitgenerationofspecificoutputsingenerativeadversarialnetworks(GANs).Asetofdatathatshouldnotbegeneratedisselectedasaredactionset,whichisthenusedtogeneratea“fakedistribution”suchthatoutputsfallingwithintheredactionsetarepenalized(Kong&Chaudhuri,2023).Thisapproachisbasedonsimilarapproachesthatre-trainmodelstolimitgenerationofspecificoutputs(Asokan&Seelamantula,2020;Hannekeetal.,2018;Sinhaetal.,2021).

3.Outputmodification:Theoutputofimagegeneratorscanbemodifiedtonotgeneratespecifickindsofimages.Thiscanbeachievedbytrainingamachinelearningclassifiertomodifyoutputsbeforetheyarerevealedtotheendusers(Randoetal.,2022)orbyincorporatingadditionalinformationandguidingtheinferenceprocess(Schramowskietal.,2023).Alternatively,reinforcementlearningwithhumanfeedbackcanbeused(Baietal.,2022;Ouyangetal.,2022)topreventgenerationofpersonaldata.However,suchmethodshave

manyshortcomings(Casperetal.,2023)andareshowntobeeasytocircumvent,especiallywhentheenduserhasaccesstotheparameters,asisthecasewithfullyopen-sourcemodels.

2

2/r/StableDiffusion/comments/wv2nw0/tutorial_how_to_remove_the_safety_filter_i

n_5/

9

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

10

CONCLUSION

TheGDPRoffersdatasubjectswithmanyrights.ThisreportcoverstechniquesandmethodstoimplementtherighttorectificationandtherighttoerasurewhenAIsystemsprocesspersonaldata.Implementingtheserightsischallengingbutmanytechnicalapproacheshavebeenproposed.Datacurationandprovenanceareprerequisitesfortheseapproaches.SomeofthechallengessuchasstochasticityoftrainingAImodelscanbemodifiedtomakecompliancewithdataerasurerequestseasier(Bourtouleetal.,2021).Suchdesignchoicesmighthaveperformancetrade-offbutareanaspectofdataprotectionbydesign.OtherimportantrightsofferedbytheGDPRtodatasubjectsarelefttofutureprojects.

Asastrongrecommendationregardingdataprotection,onlytheuseofcompletelyanonymiseddataforthedevelopmentanddeploymentofAImodelswouldavoidobligationsrelatedtothecorrectionanddeletionofpersonaldatainAImodels.Ifitisnecessarytousepersonaldata,includingpseudonymiseddata,todevelopanAImodelthenthelegalobligationstoimplementdatasubjectrightsapply.TheupdatesandchangesmadetotheAImodelshouldbeadequatelyloggedanddocumentedsuchthatsubsequentrequestforrectificationanderasureofpersonaldatacanbefulfilled.

AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights

11

BIBLIOGRAPHY

Asokan,S.,&Seelamantula,C.(2020).TeachingaGANwhatnottolearn.AdvancesinNeuralInformationProcessingSystems,33,3964–3975.

Bai,Y.,Kadavath,S.,Kundu,S.,Askell,A.,Kernion,J.,Jones,A.,Chen,A.,Goldie,A.,Mirhoseini,A.,

McKinnon,C.,Chen,C.,Olsson,C.,Olah,C.,Hernandez,D.,Drain,D.,Ganguli,D.,Li,D.,Tran-Johnson,E.,Perez,E.,…Kaplan,J.(2022).ConstitutionalAI:HarmlessnessfromAIFeedback.CoRR,

abs/2212.08073.

/10.48550/ARXIV.2212.08073

Bourtoule,L.,Chandrasekaran,V.,Choquette-Choo,C.A.,Jia,H.,Travers,A.,Zhang,B.,Lie,D.,&Papernot,N.(2021).MachineUnlearning.2021IEEESymposiumonSecurityandPrivacy(SP),141–159.

/10.1109/SP40001.2021.00019

Brophy,J.,&Lowd,D.(2021).MachineUnlearningforRandomForests.ICML,139,1092–1104.

Carlini,N.,Tramèr,F.,Wallace,E.,Jagielski,M.,Herbert-Voss,A.,Lee,K.,Roberts,A.,Brown,T.B.,Song,D.,Erlingsson,Ú.,Oprea,A.,&Raffel,C.(2021).ExtractingTrainingDatafromLargeLanguageModels.USENIXSecuritySymposium,2633–2650.

Casper,S.,Davies,X.,Shi,C.,Gilbert,T.K.,Scheurer,J.,Rando,J.,Freedman,R.,Korbak,T.,Lindner,D.,Freire,P.,Wang,T.,Marks,S.,Segerie,C.-R.,Carroll,M.,Peng,A.,Christoffersen,P.,Damani,M.,Slocum,S.,Anwar,U.,…Hadfield-Menell,D.(2023).OpenProblemsandFundamentalLimitationsofReinforcementLearningfromHumanFeedback.

/10.48550/ARXIV.2307.15217

Cha,S.,Cho,S.,Hwang,D.,Lee,H.,Moon,T.,&Lee,M.(2024).LearningtoUnlearn:Instance-wiseUnlearningforPre-trainedClassifiers(arXiv:2301.11578).arXiv.

/abs/2301.11578

Chandrasekaran,V.,Jia,H.,Thudi,A.,Travers,A.,Ya

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论