




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SUPPORTPOOL
OFEXPERTSPROGRAMME
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision
Effectiveimplementationofdatasubjects’rights
byDr.KrisSHRISHAK
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
2
AspartoftheSPEprogramme,theEDPBmaycommissioncontractorstoprovidereportsandtoolsonspecifictopics.
TheviewsexpressedinthedeliverablesarethoseoftheirauthorsandtheydonotnecessarilyreflecttheofficialpositionoftheEDPB.TheEDPBdoesnotguaranteetheaccuracyoftheinformationincludedinthedeliverables.NeithertheEDPBnoranypersonactingontheEDPB’sbehalfmaybeheldresponsibleforanyusethatmaybemadeoftheinformationcontainedinthedeliverables.
Someexcerptsmayberedactedorremovedfromthedeliverablesastheirpublicationwouldunderminetheprotectionoflegitimateinterests,including,interalia,theprivacyandintegrityofanindividualregardingtheprotectionofpersonaldatainaccordancewithRegulation(EU)2018/1725and/orthecommercialinterestsofanaturalorlegalperson.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
3
TABLEOFCONTENTS
Introduction 4
1Challenges 4
2Howtodeleteandunlearn 5
3Whattounlearn 7
4Approximateunlearningverification 8
5ConcernswithMachineUnlearning 8
6LimitingpersonaldataoutputfromgenerativeAI 9
Conclusion 10
Bibliography 11
DocumentsubmittedinMarch2024
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
4
INTRODUCTION
TheGeneraldataProtectionRegulation(GDPR)empowersdatasubjectsthrougharangeofrights.Adatasubjecthastherighttoinformation(Articles12-14),therightofaccess(Article15),therighttorectification(Article16),therighttoerasure(Article17),therighttorestrictprocessing(Article18),therighttodataportability(Article20),therighttoobject(Article21)andtherightnottobesubjecttoadecisionbasedsolelyonautomatedprocessing(Article22).
Thisreportcoverstechniquesandmethodsthatcanbeusedforeffectiveimplementationofdatasubjectrights,specifically,therightstorectificationandtherighttoerasurewhenAIsystemshavebeendevelopedwithpersonaldata.Thisreportaddressestheserightstogetherbecauserectificationinvolveserasurefollowedbytheinclusionofnewdata.Thesetechniquesandmethodsaretheresultofearly-stageresearchbytheacademiccommunity.Improvementsandalternativeapproachesareexpectedtobedevelopedinthecomingyears.
1CHALLENGES
AIsystemsaretrainedondatathatisoftenmemorisedbythemodels(Carlinietal.,2021).Machinelearningmodelsbehavelikelossycompressorsoftrainingdataandtheperformanceofthesemodelsbasedondeeplearningisfurtherattributedtothisbehaviour(Schelter,2020;Tishby&Zaslavsky,2015).Inotherwords,machinelearningmodelsarecompressedversionsofthetrainingdata.Additionally,AImodelsarealsosusceptibletomembershipinferenceattacksthathelptoassesswhetherdataaboutapersonisinthetrainingdataset(Shokrietal.,2017).Thus,implementingtherighttoerasureandrectificationrequiresreversingthememorisationofpersonaldatabythemodel.Thisinvolvesdeletionof(1)thepersonaldatausedasinputfortraining,and(2)theinfluenceofthespecificdatapointsinthetrainedmodel.
Thereareseveralchallengestoeffectivelyimplementtheserights(Bourtouleetal.,2021):
1.Limitedunderstandingofhoweachdatapointimpactsthemodel:Thischallengeisparticularlyprevalentwiththeuseofdeepneuralnetworks.Itisnotknownhowspecificinputdatapointsimpacttheparametersofamodel.Thebestknownmethodsrelyon“influencefunctions”involvingexpensiveestimations(bycomputingsecond-orderderivativesofthetrainingalgorithm)(Cook&Weisberg,1980;Koh&Liang,2017).
2.Stochasticityoftraining:TrainingAImodelsisusuallyperformedbyrandomsamplingofbatchesofdatafromthedataset,randomorderingofthebatchesinhowandwhentheyareprocessed,andparallelisationwithouttime-synchronisation.Allthesemakethetrainingprocessprobabilistic.Asaresult,amodeltrainedwiththesamealgorithmanddatasetcouldresultindifferenttrainedmodels(Jagielskietal.,2023).
3.Incrementaltrainingprocess:Modelsaretrainedincrementallysuchthatanupdaterelyingonspecifictrainingdatapointwillaffectallsubsequentupdates.Inotherwords,updatesinthetrainingprocessdependonallpreviousupdates.Inthedistributedtrainingsettingoffederatedlearning,multipleclientskeeptheirdataandtrainamodellocallybeforesendingtheupdatestoacentralserver.Insuchasetting,evenwhenaclientonlyoncesendsitsupdateandcontributestotheglobalmodelatthecentralserver,thedataandthecontributionofthisclientinfluencesallfutureupdatestotheglobalmodel.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
5
4.Stochasticityoflearning:Inadditiontothetrainingprocess,thelearningalgorithmisalsoprobabilistic.Thechoiceoftheoptimiser,forexample,forneuralnetworkscanresultinmanydifferentlocalminima(resultoftheoptimisation).Thismakesitdifficulttocorrelatehowaspecificdatapointcontributedtothe“learning”inthemodel.
2HOWTODELETEANDUNLEARN
1.DataCurationandProvenance:EssentialelementstoimplementtherightsinArticles15-17ofGDPRaredatacurationandprovenance.However,thesearenecessarybutnotsufficientforimplementingtheserightscompletelyastheydonotincludeinformationrelatedtohowthedatainfluencedthetrainedmodel.Theseareprerequisitesfortheotherapproachesinthisreport.
2.Retrainingofmodels:Deletingthemodel,removingthepersonaldatarequestedtobeerased,andthenretrainingthemodelwiththerestofthedataisthemethodthatimplementstherightsinArticles16-17oftheGDPReffectively.Forsmallmodels,thismethodworkswell.However,forlargermodels,thetrainingcostisveryexpensiveandoftenalternativeapproachesmightberequired,especiallywhennumerousdeletionrequestsareexpected.Furthermore,thisapproach,andmanyoftheotherapproaches,assumesthatthemodeldeveloperisinpossessionofthetrainingdatasetswhentherequirementtodeleteandretrainarises.
3.Exactunlearning:Toavoidretrainingtheentiremodel,approachestounlearnthedatahavebeenproposed.Despitethegrowingliterature,thereareveryfewunlearningmethodsthatarecurrentlymostlikelytobeeffective.
a.Modelagnosticunlearning:Thismethodisnotdependentonthespecificmachinelearningtechnique.Itistheonlyapproachwhichhasbeenshowntoworkfordeepneuralnetworks.Thisapproacheither(1)reliesonstoringmodelgradients(Wuetal.,2020),or(2)reliesonthemeasurementofsensitivityofmodelparameterstochangesindatasetsusedinfederatedlearning(Taoetal.,2024),or(3)modifiesthelearningprocesstobemoreconducivetounlearning(Bourtouleetal.,2021).
Thelatter,knownasSISA(Sharded,Isolated,Sliced,andAggregated),iscurrentlythebest-knownapproach.Itinvolvesmodifyingthetrainingprocess,butisindependentofspecificlearningalgorithms(Bourtouleetal.,2021).Thisapproachpresetstheorderinwhichthelearningalgorithmisqueriedtoeasetheunlearningprocess.Theapproachcanbedescribedasfollows:
i.Thetrainingdatasetisdividedintomultiple“shards”suchthateachtrainingdatapointispresentinonlyone“shard”.Thisallowsforanon-overlappingpartitionofthedataset.Itisalsopossibletofurther“slice”the“shards”sothatthetrainingismoremodularanddeletioniseasedfurther.
ii.Themodelisthentrainedoneachoftheseshardsorslices.Thislimitstheinfluenceofthedatapointstothesespecificshardsorslices.
iii.Whenarequestforerasureorrectificationarrives,unlearningisperformed,notbyretrainingtheentiremodel,butbyretrainingonlytheshardorslicethathadincludedthe“deleterequested”data.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
6
Thismethodisflexible.Forinstance,theshardscanbechosensuchthatthemostlikely“deleterequest”dataareinoneshard.Then,fewershardswillneedtoberetrained,assumingthatpersonaldataandnon-personaldataareseparatedaspartofdatacuration.
b.Modelintrinsicunlearning:ThesemethodsaredevelopedforspecificAItechniques.Forinstance,themethodsthataresuitablefordecisiontreesandrandomforestshavebeenshowntobeeffective(Brophy&Lowd,2021)byusinganewapproachtodevelopdecisiontreesandthenrelyingonstrategicthresholdingatdecisionnodesforcontinuousattributes,andathigh-levelrandomnodes.Thenthenecessarystatisticsarecachedatallthenodestofacilitateremovalofspecifictraininginstances,withouthavingtoretraintheentiredecisiontree.
c.Applicationspecificunlearning:Whileexactunlearningisgenerallyexpensiveintermsofcomputationandstorage,someapplicationsandtheiralgorithmsaremoresuitabletoexactunlearning.Specifically,recommendersystemsbasedonk-nearestneighbourmodelsarewellsuitedduetotheiruseofsparseinteractiondata.Suchmodelsarewidelyusedinmanytechniquesincludingcollaborativefilteringandrecentrecommendersystemapproachessuchasnext-basketrecommendation.Usingefficientdatastructures,sparsedataandparallelupdates,personaldatacanberemovedfromrecommendationsystems(Schelteretal.,2023).
4.ApproximateUnlearning:Significantamountoftechnicalliteratureonmachineunlearningfocusesonapproximateunlearning,wherethedataisnotdeleted,butinstead,themodelisadjustedsuchthattheprobabilityoftheinfluenceofthedata,estimatedbasedonproxysignals,onthemodelisreduced.Approximateunlearningislessexpensiveintermsofcomputationandstoragerequirements.
a.Finetuning:Onceamodelistrained,itcanbefinetunedformanypurposesincludingtheapproximateremovaloftheeffectofthedatathathasbeenrequestedtobedeleted(Golatkaretal.,2020;Warneckeetal.,2023).Whenadeletionrequestalongwiththe“removaldataset”(thedatatoberemoved)isreceived,themodelistrainedagainforafewepochsonthis“removaldataset”suchthatthemodel“forgets”it.
b.Influenceunlearning:Approximateunlearningapproacheshavebeenproposedthatrelyonestimatingtheinfluenceofspecificdataonthemodel(Izzoetal.,2021;Koh&Liang,2017).Thisestimationisthenusedtoupdatethemodelforunlearning,whichisakintofinetuning.Usually,theseapproachesalsorequireadditionalmodeltraining.However,toreducethecomputation,itisalsopossibletoprunethemodel(orreducethesize)beforetheunlearningprocess(Jiaetal.,2023).
c.Intentionalmisclassification:Whenarequesttodeletespecificdataaboutapersonisreceived,themodelownerintentionallymisclassifiesthesedatapoints.Thiscanbeachievedwithaccesstothepre-trainedmodelandthedatapointsprovidedbythedatasubjectwiththedeletionrequestbutdoesnotrequireaccesstotherestofthetrainingdataset(Chaetal.,2024).Anotherapproach,saliencyunlearning,tacklestheproblemofunlearningatthelevelofweightsratherthandataormodel.Itreliesonestimatingtheweightsthataremostrelevant(salient)forunlearningbeforedeployingrandomlabelsforthedatatobedeleted(Fanetal.,2024).Thisapproachhasbeenproposedforimageclassificationandgeneration.
d.Parameterdeletion:Anotherapproachtounlearnwithoutdeletingthedatafromthemodelbutremovingitsinfluenceinvolvesstoringalistofdataandparameterupdates
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
duringthetrainingprocess.Whenadeletionrequestarrives,theparameterupdatesareundone(Gravesetal.,2021).Duetotheneedtostoretheparameterupdates,thisapproachhasahighstoragerequirement,especiallyforlargemodels,althoughlessthanthatforexactunlearning.
5.Differentialprivacyandmodelretiringpolicy:Differentialprivacygivesamathematicalguaranteethatthereisaboundonthecontributionofindividualdatapointtothemodelandthatthiscontributionissmall.However,thecontributionisnotzero,
1
thusnecessitating“unlearning”(Chandrasekaranetal.,2021).Oneapproachistocombinedifferentialprivacywithapolicytoperiodicallyretireordeletethemodelandretrainadifferentiallyprivatemodel,insteadofretrainingforeverydeletionrequest.
Whenadeletionrequestisreceived,iftherelevantpersonaldataisinthepossessionofthedatacontroller,thenthedatashouldbedeleted.Themodeldeletionisnotperformedforeveryrequestbecauseitisunclearhowindividualpersonaldatapointsimpactthedifferentiallyprivatemodel.However,oncethereisasufficientlylargenumberofrequests,then,puttogether,thesedatapointswouldaffectthemodel(stillunknownhowexactly),andthusthereisreasonenoughtodeletethemodelandretrainthemodelwithdifferentialprivacy.
3WHATTOUNLEARN
1.Samples:Adeletionrequestforaspecificpieceofinformationorsampleaboutaperson.Methodsdescribedintheprevioussectionhavebeendevelopedforthissetting.
2.Features:Insomeapplications,featuresandlabelsmayholdcertainpersonalcharacteristicsthataretobedeleted.Anapproximateunlearningmethodhasbeenproposedforthispurposebyestimatingtheinfluenceofspecificfeaturesonthemodelparameters(Warneckeetal.,2023).Thismethodcanbeusedtounlearnfeaturesinatrainedmodelforthousandsofdatasubjects.Anotherapproachinvolvesestimatingthecorrelationbetweenfeaturesthatcouldrepresentthepersonalcharacteristicsandthentoprogressivelyunlearnthesefeatures(Guoetal.,2022).Thismethodismostapplicablefordeepneuralnetworksintheimagedomain,forexample,facialrecognitionsystems,wherethedeeperlayersoftheneuralnetworksaresmaller(Nguyenetal.,2022).
3.Class:AIsystemscanbedesignedtoclassifyoutputsintoone,twoormanydifferentclasses.Incertainapplications,thedatatobedeletedisrepresentedasaclassinthetrainedmodel.Insomefacialrecognitionapplications,alldatapointsaboutapersonintheformoffacialimagesbelongtoaparticularclassandifapersonrequestsfortheirpersonaldatatobedeleted,thentheclassificationshouldnotworkforthisperson’sclass.Acoupleofapproximateunlearningmethodsintroducenoisesuchthattheclassificationerrorforthedeletionclassismaximisedandthenthemodelis“repaired”tomaintaintheperformancefortherestofthedata(Chundawatetal.,2023;Tarunetal.,2024).Thesemethodsdonotdeleteallthesamplesassociatedwiththeclass,butinsteadmanipulatethetrainedmodelforthisclassdirectly.
1Itwouldbeimpossibleforamodeltolearnfromthetrainingdataifthecontributioniszero(Bourtouleetal.,2021).
7
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-
Effectiveimplementationofdatasubjects’rights
8
WhenimageclassificationorfacialrecognitiontechnologyisdevelopedbytrainingConvolutionalNeuralNetwork(CNN)modelswithfederatedlearning,theclassisselectivelyprunedbasedonextractingfeaturesintheimagesthatcontributetodifferentclasses(Wangetal.,2022).Thepersonmakingthedeletionrequestlocallyextractsthesefeaturesfortheirimagesandsendsittothecentralserver,whothenprunestheclassfromtheglobalmodel.
4.Client:WhenAIsystemsaredevelopedwithfederatedlearningthatincludescontributionfrommultipleclients,aclient(oraperson)mightrequestthattheirentirecontributiontotheglobalmodelduetotheirlocaldatasetbedeleted.Duetotheincrementaltrainingprocess,onlydeletingtheupdatestotheglobalmodelmadebythisclientisinsufficienttoremovetheinfluenceofthisclient’sdata.AnapproachknownasFedEraserstoreshistoricalparameterupdatesatacentralservertosanitiseallupdatesthatfollowedtheupdatesofthisclient(Liuetal.,2021).Thesanitisationprocessinvolvescollaborativeupdatesfromtheremainingclientswhosecontributionsarestillpartoftheglobalmodel.
4APPROXIMATEUNLEARNINGVERIFICATION
Approximateunlearningmethodshavebeenproposedwiththeclaimthattheyareindistinguishablefromretrainingthemodelfromscratchwithoutthedeleteddata.Theclaimsareusuallybasedonmetricssuchasindistinguishabilitytoahypotheticallymodelretrainedfromscratch,unlearningaccuracy,remainingaccuracyandmembershipinferenceattacks.
Unlearningaccuracyistheaccuracyoftheunlearnedmodelonthedataexpectedtobeforgotten.Remainingaccuracyistheaccuracyoftheunlearnedmodelontheremainingdata.Membershipinferenceattacks(MIAs)areusedinanattempttoextract“deleted”datafromtheupdatedmodel.Iftheprobabilityofsuchextractionisaround50%,thenthe“deletion”istreatedasasuccess.However,MIAisaprivacyattackandrelyingonitfortestingisunreliable.Awell-developedmodelwillnotbesusceptibletoMIA,inwhichcase,MIAcannotbeusedasaproxysignaltotestunlearning.
Furthermore,approximatelearninglacksstrongguarantees.Thesemetricsdonotaddressaverybasicconcern:itispossibletoobtaintwomodelswithsimilarweightsandparameterswithnon-overlappingtrainingdata(Thudietal.,2022).Thatis,removinganinfluenceofaparticularparameterisnotsufficienttohave“deleted”thedataastheinfluencecouldhavebeenfromadifferentdata.Moreover,theassumptionofhavingtounlearnamodelthatisindistinguishablefromretrainingfromscratchitselfmaynotbetherightapproach.Thisisbecauseamodelretrainedfromscratchcouldhavedifferentmodeldistributionsduetothestochasticityoftraining(Goeletal.,2022;Yang&Shami,2020).
5CONCERNSWITHMACHINEUNLEARNING
1.Privacy:Justlikemachinelearning,machineunlearningalsointroducesprivacyconcerns.Membershipinferenceattacks(Shokrietal.,2017)thathavebeenshowntoattackmachinelearningcanalsobeusedagainstmachineunlearning(Chenetal.,2021).Theconcernhereisthatwhenitispossibletoqueryamodeltwice,oncebeforeunlearningandonceafterunlearning,thepersonqueryingcoulddeducewhichdatawasdeleted.
2.Bias:Whendeletionrequestsaremade,minorityclassesaremoreadverselyaffectedbecausethedatasetsintherealworldarenotbalanced.Whenitcomestodatadeletionrequests,noteveryoneisequallylikelytomakesuchrequests.Ithasbeenshownthatthereisacorrelation
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
betweentheunlearningprobabilityandclasslabels(Koch&Soll,2023).Thus,itisimperativethataccuracyofmodelsforsub-categoriesareassessedafterunlearningtoassessforbias.
6LIMITINGPERSONALDATAOUTPUTFROMGENERATIVEAI
Theapproachesdiscussedthusfaraddressapplicationsincludingfacialrecognitiontechnologywherepersonaldataprocessingisconcerned.AIsystemsaresusceptibletoprivacyleakagesandtoadversarialattackssuchasMIA.ThisisalsotrueofgenerativeAIsystems,whichcouldgeneratepersonaldataaspartofitsoutput.TextgenerationAIbasedonlargelanguagemodelshavebeenshowntobemoresusceptibletoMIAthansmallmodels(Carlinietal.,2021).
IngenerativeAIsystems,personaldataisoutputwhenexplicitlyprompted(E.g.,Givemethebirthdateof[personname]).Thesamecantakeplacewithimageandvideogenerationtoolsaswell.Personaldataisalsooutputwhennotexplicitlyprompted.ThesegenerativeAItoolsmakethingsupor“hallucinate”(Maynezetal.,2020)andgeneratefactuallyincorrectcontentthatcouldrevealpersonaldataaboutpeople.E.g.,wheninformationaboutonepersonisaskedandalargelanguagemodeloutputsinformationaboutanotherperson(withtheirname)(D.Zhangetal.,2023).
TheareaofresearchtolimitgenerationofpersonaldatafromgenerativeAIisnew,andmuchlessmaturethanthefieldofmachineunlearning,whichbyitselfisquiteyoung.
1.Modelfinetuning:Inthecaseofdiffusionmodels(e.g.,StableDiffusion),amethodhasbeenproposedtofinetunethemodelsuchthatspecificconceptsarenotoutputintheimages(Gandikotaetal.,2023).Thismethodeliminatesvisualconceptssuchasspecificartisticstyles,nudityandcertainobjects.Asimilarapproachcanbeusedtopreventgenerationofimageswithspecificpersonalcharacteristics(E.J.Zhangetal.,2023).Anotherapproachknownas“selectiveamnesia”appliescontinuouslearningtoforgetconceptsfromgenerativemodelsbasedonvariationalautoencodersanddiffusionmodels(Heng&Soh,2024).
2.Dataredaction:Avariantofmodelfinetuningusesdataandclassredactiontechniquestolimitgenerationofspecificoutputsingenerativeadversarialnetworks(GANs).Asetofdatathatshouldnotbegeneratedisselectedasaredactionset,whichisthenusedtogeneratea“fakedistribution”suchthatoutputsfallingwithintheredactionsetarepenalized(Kong&Chaudhuri,2023).Thisapproachisbasedonsimilarapproachesthatre-trainmodelstolimitgenerationofspecificoutputs(Asokan&Seelamantula,2020;Hannekeetal.,2018;Sinhaetal.,2021).
3.Outputmodification:Theoutputofimagegeneratorscanbemodifiedtonotgeneratespecifickindsofimages.Thiscanbeachievedbytrainingamachinelearningclassifiertomodifyoutputsbeforetheyarerevealedtotheendusers(Randoetal.,2022)orbyincorporatingadditionalinformationandguidingtheinferenceprocess(Schramowskietal.,2023).Alternatively,reinforcementlearningwithhumanfeedbackcanbeused(Baietal.,2022;Ouyangetal.,2022)topreventgenerationofpersonaldata.However,suchmethodshave
manyshortcomings(Casperetal.,2023)andareshowntobeeasytocircumvent,especiallywhentheenduserhasaccesstotheparameters,asisthecasewithfullyopen-sourcemodels.
2
2/r/StableDiffusion/comments/wv2nw0/tutorial_how_to_remove_the_safety_filter_i
n_5/
9
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
10
CONCLUSION
TheGDPRoffersdatasubjectswithmanyrights.ThisreportcoverstechniquesandmethodstoimplementtherighttorectificationandtherighttoerasurewhenAIsystemsprocesspersonaldata.Implementingtheserightsischallengingbutmanytechnicalapproacheshavebeenproposed.Datacurationandprovenanceareprerequisitesfortheseapproaches.SomeofthechallengessuchasstochasticityoftrainingAImodelscanbemodifiedtomakecompliancewithdataerasurerequestseasier(Bourtouleetal.,2021).Suchdesignchoicesmighthaveperformancetrade-offbutareanaspectofdataprotectionbydesign.OtherimportantrightsofferedbytheGDPRtodatasubjectsarelefttofutureprojects.
Asastrongrecommendationregardingdataprotection,onlytheuseofcompletelyanonymiseddataforthedevelopmentanddeploymentofAImodelswouldavoidobligationsrelatedtothecorrectionanddeletionofpersonaldatainAImodels.Ifitisnecessarytousepersonaldata,includingpseudonymiseddata,todevelopanAImodelthenthelegalobligationstoimplementdatasubjectrightsapply.TheupdatesandchangesmadetotheAImodelshouldbeadequatelyloggedanddocumentedsuchthatsubsequentrequestforrectificationanderasureofpersonaldatacanbefulfilled.
AI-ComplexAlgorithmsandeffectiveDataProtectionSupervision-Effectiveimplementationofdatasubjects’rights
11
BIBLIOGRAPHY
Asokan,S.,&Seelamantula,C.(2020).TeachingaGANwhatnottolearn.AdvancesinNeuralInformationProcessingSystems,33,3964–3975.
Bai,Y.,Kadavath,S.,Kundu,S.,Askell,A.,Kernion,J.,Jones,A.,Chen,A.,Goldie,A.,Mirhoseini,A.,
McKinnon,C.,Chen,C.,Olsson,C.,Olah,C.,Hernandez,D.,Drain,D.,Ganguli,D.,Li,D.,Tran-Johnson,E.,Perez,E.,…Kaplan,J.(2022).ConstitutionalAI:HarmlessnessfromAIFeedback.CoRR,
abs/2212.08073.
/10.48550/ARXIV.2212.08073
Bourtoule,L.,Chandrasekaran,V.,Choquette-Choo,C.A.,Jia,H.,Travers,A.,Zhang,B.,Lie,D.,&Papernot,N.(2021).MachineUnlearning.2021IEEESymposiumonSecurityandPrivacy(SP),141–159.
/10.1109/SP40001.2021.00019
Brophy,J.,&Lowd,D.(2021).MachineUnlearningforRandomForests.ICML,139,1092–1104.
Carlini,N.,Tramèr,F.,Wallace,E.,Jagielski,M.,Herbert-Voss,A.,Lee,K.,Roberts,A.,Brown,T.B.,Song,D.,Erlingsson,Ú.,Oprea,A.,&Raffel,C.(2021).ExtractingTrainingDatafromLargeLanguageModels.USENIXSecuritySymposium,2633–2650.
Casper,S.,Davies,X.,Shi,C.,Gilbert,T.K.,Scheurer,J.,Rando,J.,Freedman,R.,Korbak,T.,Lindner,D.,Freire,P.,Wang,T.,Marks,S.,Segerie,C.-R.,Carroll,M.,Peng,A.,Christoffersen,P.,Damani,M.,Slocum,S.,Anwar,U.,…Hadfield-Menell,D.(2023).OpenProblemsandFundamentalLimitationsofReinforcementLearningfromHumanFeedback.
/10.48550/ARXIV.2307.15217
Cha,S.,Cho,S.,Hwang,D.,Lee,H.,Moon,T.,&Lee,M.(2024).LearningtoUnlearn:Instance-wiseUnlearningforPre-trainedClassifiers(arXiv:2301.11578).arXiv.
/abs/2301.11578
Chandrasekaran,V.,Jia,H.,Thudi,A.,Travers,A.,Ya
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度商业空间租赁合同终止申请文件
- 二零二五年度体育场馆委托管理及赛事运营协议范文
- 二零二五年度润滑油行业展会赞助与销售合作合同
- 2025年度社区共享车位租赁及停车管理服务协议
- 二零二五年度商铺场地租赁与广告资源共享合同
- 2025年度绿色建筑材料区域经销商合作协议书
- 2025年度物流行业司机安全责任与职业规划协议
- 2025年度无人机飞行意外事故免责承诺书
- 2025年度鱼塘承包与渔业可持续发展合作协议
- 二零二五年度咖啡厅连锁店铺转让及加盟管理合同
- 公共场所安全知识课件
- 《临床诊断》课件-咳嗽
- 体测免测申请书范文
- 介入手术术中安全护理措施
- 高中语文整本书阅读教学研究
- 2024年苏州农业职业技术学院高职单招语文历年参考题库含答案解析
- 投资银行学第4版- 课件汇 马晓军 第1-4章 投资银行概述-上市公司再融资
- 2025年月度工作日历含农历节假日电子表格版
- 中国近现代史纲要心得体会
- 竣工结算审计服务投标方案(2024修订版)(技术方案)
- 2025年中考语文复习课件 模块三 语言综合运用
评论
0/150
提交评论