2025年粤教新版选修3化学下册阶段测试试卷_第1页
2025年粤教新版选修3化学下册阶段测试试卷_第2页
2025年粤教新版选修3化学下册阶段测试试卷_第3页
2025年粤教新版选修3化学下册阶段测试试卷_第4页
2025年粤教新版选修3化学下册阶段测试试卷_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年粤教新版选修3化学下册阶段测试试卷747考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、下列说法中正确的是A.HF、HCl、H2S、PH3的稳定性依次增强B.按Mg、Si、N、F的顺序,原子半径由小变大C.某主族元素的电离能I1~I7数据如下表所示(单位:kJ/mol);可推测该元素位于元素周期表第ⅤA族。

D.在①P、S,②Mg、Ca,③Al、Si三组元素中,每组中第一电离能较大的元素的原子序数之和为412、下列说法中正确的是()A.电子在核外运动时有确定的轨道和轨迹,电子云就是对其运动轨迹的准确描述B.焰色反应与电子的跃迁有关,不是化学变化。C.量子力学中,n值决定电子能量,一般而言n值越大,电子离核越远,电子能量越低D.玻尔理论能成功地解释钠原子的黄光谱线为双线结构的实验事实3、四种元素的基态原子价电子排布式:①2s22p3②2s22p4③3s23p1④3s23p4,下列说法正确的是A.元素最高正价:②=④B.第一电离能:①>②C.电负性:③>④D.简单离子半径:③>②4、如图是第三周期11~17号元素某些性质变化趋势的柱形图;下列有关说法中正确的是。

A.y轴表示的可能是第一电离能B.y轴表示的可能是电负性C.y轴表示的可能是原子半径D.y轴表示的可能是形成基态离子转移的电子数5、下列各项叙述中正确的是()A.同一原子的能层越高,s电子云半径越大B.在同一个电子层上运动的电子,其自旋方向肯定不同C.杂化轨道可用于形成σ键、π键或用于容纳未参与成键的孤电子对D.镁原子的核外电子排布由1s22s22p63s2变为1s22s22p63p2时,释放能量6、下列叙述中错误的是()A.所有的非金属元素都在p区B.磷的外围电子排布方式为3s23p3C.碱金属元素具有较小的电负性D.当各轨道处于全满、半满、全空时原子较稳定7、第ⅤA族元素的原子R与A原子结合形成RA3气态分子,其立体结构呈三角锥形。RCl5在气态和液态时,分子结构如图所示,下列关于RCl5分子的说法中不正确的是()

A.并不是每个原子都达到8电子稳定结构B.键角(Cl—R—Cl)有90°、120°、180°几种C.RCl5受热后会分解生成分子RCl3,RCl5和RCl3都是极性分子D.分子中5个R—Cl键键能不都相同8、已知干冰晶胞属于面心立方最密堆积,晶胞中相邻最近的两个CO2分子间距为apm,阿伏加德罗常数为NA,下列说法正确的是A.晶胞中一个CO2分子的配位数是8B.晶胞的密度表达式是g·cm-3C.一个晶胞中平均含6个CO2分子D.CO2分子的立体构型是直线形,中心C原子的杂化类型是sp3杂化评卷人得分二、多选题(共9题,共18分)9、基态原子由原子核和绕核运动的电子组成,下列有关核外电子说法正确的是A.基态原子的核外电子填充的能层数与元素所在的周期数相等B.基态原子的核外电子填充的轨道总数一定大于或等于(m表示原子核外电子数)C.基态原子的核外电子填充的能级总数为(n为原子的电子层数)D.基态原子的核外电子运动都有顺时针和逆时针两种自旋状态10、已知X、Y、Z、W、R是原子序数依次增大的短周期主族元素,X是周期表中的原子半径最小的元素,Y元素的最高正价与最低负价的绝对值相等,Z的核电荷数是Y的2倍,W的最外层电子数是其最内层电子数的3倍。下列说法不正确的是A.原子半径:Z>W>RB.W、R对应的简单氢化物的稳定性前者大于后者C.W与X、W与Z形成的化合物的化学键类型完全相同D.电负性R>Y、X11、下列叙述正确的是【】A.氢键是一种特殊的化学键,广泛存在于自然界中B.CO和N2的分子量相同,但CO的沸点比N2的高C.CH2=CH2分子中共有四个σ键和一个π键D.若把H2S分子写成H3S分子,违背了共价键的饱和性12、下表中各粒子对应的立体构型及杂化方式均正确的是。选项粒子立体构型杂化方式ASO3平面三角形S原子采取sp2杂化BSO2V形S原子采取sp3杂化CCO32-三角锥形C原子采取sp2杂化DBeCl2直线性Be原子采取sp杂化

A.AB.BC.CD.D13、有下列两组命题。A组B组Ⅰ.H2O分子间存在氢键,H2S则无①H2O比H2S稳定Ⅱ.晶格能NaI比NaCl小②NaCl比NaI熔点高Ⅲ.晶体类型不同③N2分子比磷的单质稳定Ⅳ.元素第一电离能大小与原子外围电子排布有关,不一定像电负性随原子序数递增而增大④同周期元素第一电离能大的,电负性不一定大

B组中命题正确,且能用A组命题加以正确解释的是A.Ⅰ①B.Ⅱ②C.Ⅲ③D.Ⅳ④14、下列物质在CCl4中比在水中更易溶的是()A.NH3B.HFC.I2D.Br215、有关晶体的叙述正确的是()A.在24g石墨中,含C-C共价键键数为3molB.在12g金刚石中,含C-C共价键键数为4molC.在60g二氧化硅中,含Si-O共价键键数为4molD.在NaCl晶体中,与Na+最近且距离相等的Na+有6个16、下列关于物质熔、沸点的比较不正确的是()A.Si、Si金刚石的熔点依次降低B.SiCl4、MgBr2、氮化硼的熔点依次升高C.F2、Cl2、Br2、I2的沸点依次升高D.AsH3、PH3、NH3的沸点依次升高17、叠氮化钠用于汽车的安全气囊中,当发生车祸时迅速分解放出氮气,使安全气囊充气,其与酸反应可生成氢叠氮酸(HN3),常用于引爆剂,氢叠氮酸还可由肼(N2H4)制得。下列叙述错误的是A.CO2、N2O与N3-互为等电子体B.氢叠氮酸(HN3)和水能形成分子间氢键C.NaN3的晶格能小于KN3的晶格能D.HN3和N2H4都是由极性键和非极性键构成的非极性分子评卷人得分三、填空题(共9题,共18分)18、第三周期元素中,镁元素核外有___种能量不同的电子;氯元素的最外层电子排布式为______;由这两种元素组成的化合物的电子式为______________。19、比较下列能级的能量大小关系(填“>”“=”或“<”):

(1)2s________4s;

(2)3p________3d;

(3)3d________4s;

(4)4d________5d;

(5)2p________3s;

(6)4d________5f。20、比较下列各项中的前者和后者,用“>”、“<”或“=”填空。

(1)熔点:NaCl_______CaO

(2)沸点:____

(3)在水中的溶解度:SO2_____CO2

(4)酸性:H3PO3_________H3PO4

(5)键能:H—O______H—S

(6)价电子数:O________Cr21、现有①BaCl2②金刚石③KOH④H2SO4⑤干冰⑥碘片⑦晶体硅⑧金属铜八种物质;按下列要求回答:(填序号)

(1)熔化时不需要破坏化学键的是________,熔化时需要破坏共价键的是________,熔点最高的是________,熔点最低的是________。

(2)属于离子化合物的是________,只有离子键的物质是________,晶体以分子间作用力结合的是________。

(3)请写出③的电子式______,⑤的电子式______。22、试用VSEPR理论判断:_____________。物质孤对电子对数轨道杂化形式分子或离子的形状SO3PO43-NCl3CS223、数十亿年来,地球上的物质不断的变化,大气的成分也发生了很大的变化.下表是原始大气和目前空气的主要成分,用下表涉及的分子回答下列问题。原始大气的主要成分CH4、NH3、CO、CO2等目前空气的主要成分N2、O2、CO2、水蒸气、稀有气体(He、Ne等)

(1)含有非极性共价键的分子是______(填化学式)

(2)含有极性共价键的非极性分子是______(填化学式)

(3)H2O中心原子的杂化方式及分子构型为______

(4)图中每条折线表示周期表ⅣA~ⅦA中的某一族元素氢化物的沸点变化,每个小黑点代表一种氢化物。其中代表CH4的是______(填字母序号)

(5)根据NH3•H2O⇌NH4++OH-,用氢键表示式写出氨分子和水分子之间最主要存在的氢键形式______24、离子液体是一种只由离子组成的液体;在低温下也能以液态稳定存在,是一种很有研究价值的溶剂。对离子液体的研究显示最常见的离子液体主要由以下的正离子和负离子组成:

回答下列问题:

(1)在周期表中的位置是______,其价电子排布式为______图1中负离子的空间构型为______。

(2)氯化铝的熔点为氮化铝的熔点高达它们都是活泼金属和非金属的化合物,熔点相差这么大的原因是______。

(3)图中正离子有令人惊奇的稳定性,它的电子在其环状结构中高度离域。该正离子中N原子的杂化方式为______,C原子的杂化方式为______。

(4)为了使正离子以单体形式存在以获得良好的溶解性能,与N原子相连的不能被H原子替换,请解释原因:______。

(5)Mg、Al三种元素的第一电离能由大到小的顺序是______。

(6)已知氮化铝的晶胞结构如图2所示。晶体中氮原子堆积方式如图3所示,这种堆积方式称为______。六棱柱底边边长为acm,高为ccm,阿伏加德罗常数的值为N,氮化铝晶体的密度为______列出计算式

25、BeCl2熔点较低,易升华,溶于醇和醚,其与AlCl3化学性质相似。由此可推断BeCl2的化学键是_______(填“离子键”或“共价键”),其在固态时属于______(填“原子”、“分子”或“离子”)晶体。26、在①CO2,②NaCl,③Na,④Si,⑤CS2,⑥金刚石,⑦(NH4)2SO4;⑧乙醇中:

(1)由极性键形成的非极性分子有__(填序号;以下同)

(2)含有金属离子的物质是__

(3)分子间可形成氢键的物质是__

(4)属于离子晶体的是__

(5)属于原子晶体的是__

(6)①~⑤五种物质的熔点由高到低的顺序是__评卷人得分四、原理综合题(共4题,共36分)27、元素周期表中第四周期的某些元素在生产;生活中有着广泛的应用。

(1)硒常用作光敏材料,基态硒原子的价电子排布图为__________;与硒同周期的p区元素中第一电离能大于硒的元素有__________种;SeO3的空间构型是_______________。

(2)科学家在研究金属矿物质组分的过程中,发现了Cu—Ni—Fe等多种金属互化物。确定某种金属互化物是晶体还是非晶体的方法是_____________________________________。

(3)镍能与类卤素(SCN)2反应生成Ni(SCN)2。(SCN)2分子中硫原子的杂化方式是__________________,σ键和π键数目之比为_____________。

(4)Co(NH3)5Cl3是钴的一种配合物,向100mL0.2mol·L-1该配合物的溶液中加入足量AgNO3溶液,生成5.74g白色沉淀,则该配合物的化学式为_____________,中心离子的配位数为________________。

(5)已知:r(Fe2+)为61pm,r(Co2+)为65pm。在隔绝空气条件下分别加热FeCO3和CoCO3,实验测得FeCO3的分解温度低于CoCO3,原因是__________________________________。

(6)某离子型铁的氧化物晶胞如下图所示,它由X、Y组成,则该氧化物的化学式为________________________。已知该晶体的密度为dg·cm-3,阿伏加德罗常数的值为NA,则该品体的晶胞参数a=_______pm(用含d和NA的代数式表示)。

28、

新型储氢材料是氢能的重要研究方向。

(1)化合物A(H3BNH3)是一种潜在的储氢材料,可由六元环状物质(HB=NH)3通过如下反应制得:3CH4+2(HB=NH)3+6H2O=3CO2+6H3BNH3。A在一定条件下通过多步去氢可最终转化为氮化硼(BN)。

①基态O原子的电子占据了___________个能层,最高能级有___________种运动状态不同的电子。

②CH4、H2O、CO2分子键角从大到小的顺序是___________。生成物H3BNH3中是否存在配位键___________(填“是”或“否”)。

(2)掺杂T基催化剂的NaAlH4是其中一种具有较好吸、放氢性能的可逆储氢材料。NaAlH4由Na+和AlH4-构成,与AlH4-互为等电子体的分子有____(任写一个),Al原子的杂化轨道类型是____。Na、Al、H元素的电负性由大到小的顺序为_____。

(3)Ni和La的合金是目前使用广泛的储氢材料;具有大容量;高寿命、耐低温等特点,在中国已实现了产业化。该合金的晶胞结构如图所示。

①该晶体的化学式为___________。

②已知该晶胞的摩尔质量为Mg/mol,密度为dg/cm3。设NA为阿伏加德罗常数的值,则该晶胞的体积是___________cm3(用含M、d、NA的代数式表示)。

③已知晶体的内部具有空隙,且每个晶胞的空隙中储存6个氢原子比较温定,晶胞参数分别为apm、apm、cpm。标准状况下氢气的密度为Mg/cm3;若忽略吸氢前后晶胞的体积变化,则该储氢材料的储氢能力为___________。(用相关字母表示已知储氢能力=)。29、磷酸亚铁锂(LiFePO4)电池是新能源汽车的动力电池之一。请回答下列问题:

(1)基态Fe原子的价电子轨道表示式(电子排布图)为____,O2-核外电子有___种运动状态。

(2)锂的紫红色焰色是一种_______光谱,LiFePO4中阴离子VSEPR模型名称为______,中心原子的杂化轨道类型为____。

(3)一般情况下,同种物质固态时密度比液态大,但普通冰的密度比水小,原因是____________;H2O2难溶于CS2,简要说明理由:____________________。

(4)Li2O是离子晶体,其晶体能可通过如图甲的Born-Haber循环计算得到。可知,Li2O晶格能为____kJ/mol。

(5)磷化钛熔点高;硬度大;其晶胞如图乙所示。

①磷化钛晶体中Ti原子周围最邻近的Ti数目为____;设晶体中Ti原子与最邻近的P原子之间的距离为r,则Ti原子与跟它次邻近的P原子之间的距离为_______。

②设磷化钛晶体中Ti、P原子半径分别为apm、bpm,它们在晶体中紧密接触,则该晶胞中原子的空间利用率为_____(用a、b表示)。30、铜单质及其化合物在很多领域中都有重要的用途。请回答以下问题:

(1)超细铜粉可用作导电材料;催化剂等;其制备方法如下:

①NH4CuSO3中金属阳离子的核外电子排布式为__________________。N、O、S三种元素的第一电离能大小顺序为____________(填元素符号)。

②向CuSO4溶液中加入过量氨水,可生成[Cu(NH3)4]SO4,下列说法正确的是________。

A.氨气极易溶于水,原因之一是NH3分子和H2O分子之间形成氢键的缘故。

B.NH3分子和H2O分子;分子空间构型不同,氨气分子的键角小于水分子的键角。

C.[Cu(NH3)4]SO4溶液中加入乙醇;会析出深蓝色的晶体。

D.已知3.4g氨气在氧气中完全燃烧生成无污染的气体,并放出akJ热量,则NH3的燃烧热的热化学方程式为:NH3(g)+3/4O2(g)===1/2N2(g)+3/2H2O(g)ΔH=-5akJ·mol-1

(2)铜锰氧化物(CuMn2O4)能在常温下催化氧化空气中的氧气变为臭氧(与SO2互为等电子体)。根据等电子原理,O3分子的空间构型为________。

(3)氯与不同价态的铜可生成两种化合物,其阴离子均为无限长链结构(如图所示),a位置上Cl原子(含有一个配位键)的杂化轨道类型为____________________。

(4)如图是金属Ca和D所形成的某种合金的晶胞结构示意图,已知镧镍合金与上述Ca-D合金都具有相同类型的晶胞结构XYn,它们有很强的储氢能力。已知镧镍合金LaNin晶胞体积为9.0×10-23cm3,储氢后形成LaNinH4.5合金(氢进入晶胞空隙,体积不变),则LaNin中n=______________________(填数值);氢在合金中的密度为________(保留两位有效数字)。

评卷人得分五、实验题(共1题,共8分)31、现有两种配合物晶体[Co(NH3)6]Cl3和[Co(NH3)5Cl]Cl2,一种为橙黄色,另一种为紫红色。请设计实验方案将这两种配合物区别开来_____________________________。参考答案一、选择题(共8题,共16分)1、D【分析】A、非金属性越强,氢化物越稳定,因此四种氢化物的稳定性依次减弱,A错误;B、同周期自左向右原子半径逐渐减小,同主族从上到下原子半径逐渐增大,则按Mg、Si、N、F的顺序原子半径由大到小,B错误;C、电离能突变在I4,其常见化合价为+3价,C错误;D、电离能较大的分别为P、Mg、Si,原子序数之和为15+12+14=41,D正确,答案选D。2、B【分析】【详解】

A.电子云图中的小黑点表示电子在核外空间出现机会的多少;而不表示具体的原子;原子的个数及电子的运动轨迹,故A错误;

B.焰色反应是元素的性质;焰色是因为金属原子或离子外围电子发生跃迁,然后回落到原位时放出的能量,由于电子回落过程放出能量的频率不同而产生不同的光,则焰色反应不是化学变化,故B正确;

C.主量子数(n)是描述核外电子距离核的远近;一般而言n值越大,电子离核越远,电子能量越高,故C错误;

D.玻尔原子理论只能解释氢原子光谱;不能解释复杂原子的光谱,故D错误;

故选B。

【点睛】

主量子数是描述核外电子距离核的远近,电子离核由近到远分别用数值n=1,2,3,有限的整数来表示,而且主量子数决定了原子轨道能级的高低,n越大,电子的能级越大,能量越高。3、B【分析】【分析】

根据四种元素的基态价电子排布式可知:①为N元素;②为O元素、③为Al元素、④为S元素;据此分析。

【详解】

A.O和S处于同一主族;但O元素一般无最高正价,A错误;

B.由于N元素的基态2p轨道电子排布处于半充满状态;故其失去电子时所吸收的能量较大,则N的第一电离能大于O元素,B正确;

C.同一周期从左向右电负性逐渐增大;故Al的电负性小于S,C错误;

D.相同离子结构的两种离子;原子序数越大半径越小,Al的原子序数大于O,故Al的简单离子半径小于O的简单离子半径,D错误;

故选B。4、B【分析】【分析】

【详解】

A.Mg的3s电子全满为稳定结构;P的3p电子半满为稳定结构,则电离能大于相邻的元素,即电离能不是随着原子序数的递增而增大,故A错误;

B.随原子序数的增大;元素的非金属性增强,则元素的电负性增强,故B正确;

C.随原子序数的增大;原子半径减小,与图像不符,故C错误;

D.金属失去电子;而非金属得到电子,如硫;氯原子形成基态离子时得到的电子数分别为2、1,与图像不符,故D错误;

答案选B。5、A【分析】【详解】

A.不同能层的s原子轨道的形状相同;但能层序数越大,电子距离原子核越远,半径越大,故A正确;

B.在一个轨道中电子的自旋方向肯定不同,但在同一能层中电子的自旋方向是可以相同,如C原子的核外电子排布在2p能级上2个电子的自旋方向相同;故B错误;

C.杂化轨道用来形成键或容纳孤对电子,未杂化的轨道与杂化轨道所在平面垂直,可用来形成键;故C错误;

D.镁原子的核外电子排布由基态变为激发态时;吸收能量,故D错误;

故答案为A。6、A【分析】【详解】

A.除氢元素外;所有的非金属元素都在P区,选项A错误;

B.磷的最外层电子数为5,其外围电子排布方式为3s23p3;选项B正确;

C.碱金属极易失去电子;元素的电负性很小,选项C正确;

D.当各轨道处于全满;半满、全空时原子较稳定;选项D正确;

故答案选A。7、C【分析】【详解】

A.R原子最外层有5个电子,形成5个共用电子对,所以RCl5中R的最外层电子数为10;不满足8电子稳定结构,故A正确;

B.上下两个顶点与中心R原子形成的键角为180°;中间为平面三角形,构成三角形的键角为120°,顶点与平面形成的键角为90°,所以键角(Cl-R-Cl)有90°;120、180°几种,故B正确;

C.据图可知RCl5分子中正负电荷中心重合,为非极性分子,RCl3分子为三角锥形;为极性分子,故C错误;

D.键长越短;键能越大,键长不同,所以键能不同,故D正确;

故答案为C。8、B【分析】【详解】

A.面心立方最密堆积配位数为12,故A错误;

B.该晶胞中最近的相邻两个CO2分子间距为apm,即晶胞面心上的二氧化碳分子和其同一面上顶点上的二氧化碳之间的距离为apm,则晶胞棱长=apm=a×10-10cm,晶胞体积=(a×10-10cm)3,该晶胞中二氧化碳分子个数=8×+6×=4,晶胞密度=故B正确;

C.该晶胞中二氧化碳分子个数=8×+6×=4,故C错误;

D.二氧化碳分子是直线形分子,C原子价层电子对个数是2,根据价层电子对互斥理论判断C原子杂化类型为sp,故D错误;

故选:B。

【点睛】

六方最密堆积、面心立方最密堆积的配位数均为12,体心立方堆积配位数为8,简单立方堆积配为数为6。二、多选题(共9题,共18分)9、AB【分析】【详解】

A.基态原子的核外电子填充的能层数等于电子层数;等于所在的周期数,故A正确;

B.由泡利(不相容)原理可知1个原子轨道里最多只能容纳2个电子,若基态原子的核外电子填充的轨道总数为n,容纳的核外电子数m最多为2n,则n大于或等于故B正确;

C.若n为原子的电子层数,基态原子的核外电子填充的能级总数为n2;故C错误;

D.依据洪特规则可知;当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,则基态原子的核外电子运动不一定都有顺时针和逆时针两种自旋状态,故D错误;

故选AB。10、BC【分析】【分析】

已知X;Y、Z、W、R是原子序数依次增大的短周期主族元素;X是周期表中原子半径最小的元素,所以X是H;Y元素的最高正价与最低负价的绝对值相等,这说明Y是第ⅣA族元素;Z的核电荷数是Y的2倍,且是短周期元素,因此Y是C,Z是Mg;W的最外层电子数是其最内层电子数的3倍,且原子序数大于Mg的,因此W是第三周期的S;R的原子序数最大,所以R是Cl元素,据此解答。

【详解】

根据以上分析可知X是H;Y是C,Z是Mg,W是S,R是Cl。

A.同周期自左向右原子半径逐渐减小;则原子半径:Z>W>R,故A正确;

B.W是S;R是Cl,非金属性越强,其气态氢化物的稳定性越强,非金属性:Cl>S,则对应的简单氢化物的稳定性前者小于后者,故B错误;

C.X是H,Z是Mg,W是S,H2S含有的化学键是极性共价键;MgS含有的化学键是离子键,因此W与X;W与Z形成的化合物的化学键类型完全不相同,故C错误;

D.X是H;Y是C,R是Cl,非金属性越强,其电负性越强,三种元素中Cl的非金属性最强,则电负性R>Y;X,故D正确;

答案选BC。11、BD【分析】【分析】

【详解】

A.氢键是一种分子间作用力;不是化学键,A错误;

B.CO和N2都是分子晶体,熔沸点主要受分子间作用力影响,但在相对分子质量相同的情况下,CO是极性分子,N2是非极性分子,极性分子的相互吸引力大于非极性分子,会使分子间作用力略大,CO的沸点比N2的高;B正确;

C.共价单键是σ键,共价双键中一个是σ键,一个是π键,所以CH2=CH2中有5个σ键;1个π键,C错误;

D.共价键具有饱和性和方向性,S最外层有6个电子,再接受2个电子就形成稳定结构,则把H2S分子写成H3S分子;违背了共价键的饱和性,D正确;

答案选BD。

【点睛】

共价单键是σ键,共价双键中一个是σ键,一个是π键,共价叁键中一个是σ键,两个是π键。12、AD【分析】【详解】

A.SO3分子中价层电子对个数=σ键个数+孤电子对个数=3+(6-3×2)=3,所以硫原子采用sp2杂化;为平面三角形结构,故A正确;

B.SO2的价层电子对个数=2+(6-2×2)=3,硫原子采取sp2杂化;该分子为V形结构,故B错误;

C.碳酸根离子中价层电子对个数=σ键个数+孤电子对个数=3+(4+2-3×2)=3,所以原子杂化方式是sp2;为平面三角形结构,故C错误;

D.BeCl2分子中每个Be原子含有2个σ键;价层电子对个数是2,没有孤电子对,为sp杂化,为直线型,故D正确;

故选AD。13、BD【分析】【详解】

试题分析:A、水分子比H2S稳定与共价键强弱有关系;与二者是否能形成氢键没有关系,错误;Ⅱ;碘化钠和氯化钠形成的均是离子晶体,晶格能NaI比NaCl小,因此NaCl比NaI熔点高,B正确;C、氮气和磷形成的晶体均是分子晶体,C错误;D、元素第一电离能大小与原子外围电子排布有关,不一定像电负性随原子序数递增而增大,同周期元素第一电离能大的,电负性不一定大,例如电负性氧元素大于氮元素,但氮元素的第一电离能大于氧元素,D正确,答案选BD。

考点:考查氢键、分子稳定性、晶体类型和性质及电离能和电负性判断14、CD【分析】【详解】

A.NH3为极性分子;由相似相容原理可知,在极性溶剂水中的溶解度大于非极性溶剂四氯化碳中的溶解度,故A错误;

B.HF为极性分子;由相似相容原理可知,在极性溶剂水中的溶解度大于非极性溶剂四氯化碳中的溶解度,故B错误;

C.I2是非极性分子;由相似相容原理可知,在非极性溶剂四氯化碳中的溶解度大于极性溶剂水中的溶解度,故C正确;

D.Br2是非极性分子;由相似相容原理可知,在非极性溶剂四氯化碳中的溶解度大于极性溶剂水中的溶解度,故D正确;

答案选CD。

【点睛】

CCl4是非极性溶剂,水为极性溶剂,I2和Br2是非极性分子,按相似相容原理,I2和Br2在CCl4中比在水中更易溶。15、AC【分析】【详解】

A.在石墨中,每个C原子与相邻的3个C原子形成共价键,每个共价键为相邻2个C原子所共有,所以每个C原子形成的共价键数目为3×=24g石墨含有的C原子的物质的量是2mol,因此其中含有的C-C共价键的物质的量为2mol×=3mol;A正确;

B.在金刚石晶体中每个碳原子与相邻的4个C原子形成4个共价键,每个共价键为相邻两个C原子形成,所以其含有的C-C数目为4×=2个;则在12g金刚石含有的C原子的物质的量是1mol,故含C-C共价键键数为2mol,B错误;

C.二氧化硅晶体中;每个硅原子含有4个Si-O共价键,所以在60g二氧化硅的物质的量是1mol,则其中含Si-O共价键键数为4mol,C正确;

D.在NaCl晶体中,每个Na+周围与它最近且距离相等的Na+有12个;D错误;

故合理选项是AC。16、AD【分析】【详解】

A.Si;SiC、金刚石都是原子晶体;共价键越强熔点越大,共价键键长C-C<Si-C<Si-Si,所以熔点高低的顺序为:金刚石>SiC>Si,故A错误;

B.一般来说,熔点为原子晶体>离子晶体>分子晶体,则熔点为BN>MgBr2>SiCl4;故B正确;

C.结构相似的分子晶体,相对分子质量越大,沸点越高,所以F2、Cl2、Br2、I2的沸点依次升高;故C正确;

D.AsH3、PH3、符合组成和结构相似的分子晶体,相对分子质量越大,沸点越高,所以AsH3>PH3,氨气分子间存在氢键,沸点大于AsH3、PH3,因而沸点顺序为NH3>AsH3>PH3;故D错误;

答案选AD。17、CD【分析】【详解】

A.N3-含3个原子、16个价电子,因此与CO2、N2O互为等电子体;故A正确;

B.HN3的分子结构为HN3和水能够形成分子间氢键;故B正确;

C.由于钾离子半径大于钠离子半径,所以NaN3的晶格能大于KN3的晶格能;故C错误;

D.HN3和N2H4都是极性分子;故D错误;

答案选CD。三、填空题(共9题,共18分)18、略

【分析】【详解】

判断电子的能量是否相同,看轨道数,镁的核外电子排布式为:1s22s22p63s2,故镁元素核外有4种能量不同的电子;氯是17号元素,最外层电子排布式为:3s23p5;镁和氯形成的化合物是离子化合物,形成离子键,故电子式为:【解析】①.4②.3s23p5③.19、略

【分析】【分析】

由构造原理可知:①同一能层的能级能量高低顺序为:ns

【详解】

(1)根据不同能层上英文字母相同的能级的能量高低:1s<2s<3s<4s,所以2s<4s;

(2)根据构造原理,同一能层的能级能量高低顺序为:ns<3d;

(3)根据构造原理,3d具有的能量介于4s和4p具有的能量之间,所以3d>4s;

(4)根据不同能层上英文字母相同的能级的能量高低:3d<4d<5d<6d,所以4d<5d;

(5)根据构造原理,能量:2p<3s;

(6)根据构造原理,能量高低:4d<5d<5f,所以4d<5f。【解析】①.<②.<③.>④.<⑤.<⑥.<20、略

【分析】【详解】

(1)NaCl中离子所带电荷数为1,CaO中离子所带电荷数为2,且O2-的半径小于Cl-的半径,所以氯化钠的晶格能小于氧化钙的晶格能,所以熔点:NaCl

(2)形成分子内氢键,而形成分子间氢键,分子间形成氢键的物质的熔沸点较高,所以沸点:<

(3)SO2分子为V形,结构不对称,属于极性分子,CO2分子为直线形,是非极性分子,水是极性分子,根据相似相溶原理,在水中的溶解度:SO2>CO2;

(4)含氧酸分子的结构中含非羟基(羟基为-OH)氧原子数越多,该含氧酸的酸性越强,所以含氧酸的通式可写成(HO)mROn,如果成酸元素R相同,则n值越大,酸性越强,则酸性:H3PO33PO4;

(5)同一主族元素,元素原子半径随着原子序数增大而增大,键长:H-O<H-S,所以键能:H-O>H-S;

(6)O的价层电子排布式为2s22p4,价电子个数为6;Cr的价层电子排布式为3d54s1,价电子个数为6,所以价电子数:O=Cr。

【点睛】

注意判断含氧酸酸性的方法:含氧酸分子的结构中含非羟基(羟基为-OH)氧原子数越多,该含氧酸的酸性越强。【解析】①.<②.<③.>④.<⑤.>⑥.=21、略

【分析】【分析】

①BaCl2是离子晶体;只含有离子键,熔化时破坏离子键;

②金刚石是原子晶体;只含有共价键,熔化时破坏共价键;

④H2SO4是分子晶体;熔化时破坏分子间作用力,不破坏共价键;

⑤干冰是分子晶体;熔化时破坏分子间作用力,不破坏共价键;

⑥碘片是分子晶体;熔化时破坏分子间作用力,不破坏共价键;

⑦晶体硅是原子晶体;只含有共价键,熔化时破坏共价键;

⑧金属铜是金色晶体;只含有金属键,熔化时破坏金属键。

【详解】

(1)分子晶体在熔化时不需要破坏化学键,H2SO4;干冰、碘片属于分子晶体的;熔化时破坏分子间作用力,不破坏共价键;原子晶体在熔化时破坏共价键,金刚石、晶体硅属于原子晶体,熔化时破坏共价键;原子晶体的熔点高,金刚石与硅相比,C的原子半径小于Si原子半径,属于金刚石的共价键更强,熔点更高,则熔点最高的是金刚石;常温下是气体的物质的熔点最低,则干冰的熔点最低,故答案为:④⑤⑥;②⑦;②;⑤;

(2)BaCl2、KOH中含有离子键,属于离子化合物,其中BaCl2中只有离子键;以分子间作用力相结合的晶体是分子晶体;则④⑤⑥是分子晶体,故答案为:①③;①;④⑤⑥;

(3)KOH是离子化合物,是由钾离子和氢氧根离子形成,电子式为干冰是二氧化碳,二氧化碳是含有碳氧双键的共价化合物,电子式为故答案为:【解析】④⑤⑥②⑦②⑤①③①④⑤⑥22、略

【分析】【分析】

SO3价层电子对数为PO43-价层电子对数为NCl3价层电子对数为CS2价层电子对数为

【详解】

SO3价层电子对数为轨道杂化形式为sp2;VSEPR模型为平面三角形,由于孤对电子对数为0,分子构型为平面三角形;

PO43−价层电子对数为轨道杂化形式为sp3;VSEPR模型为四面体形,由于孤对电子对数为0,离子构型为正四面体形;

NCl3价层电子对数为轨道杂化形式为sp3;VSEPR模型为四面体形,由于孤对电子对数为1,分子构型为三角锥形;

CS2价层电子对数为轨道杂化形式为sp,VSEPR模型为直线形,由于孤对电子对数为0,分子构型为直线形;

故答案为:0、sp2、平面三角形;0、sp3、正四面体形;1、sp3、三角锥形;0、sp、直线形。【解析】。物质孤对电子对数轨道杂化形式分子或离子的形状SO30sp2平面三角形PO43−0sp3正四面体NCl31sp3三角锥形CS20sp直线形23、略

【分析】【分析】

同种非金属元素之间存在非极性共价键;正负电荷重心重合的分子为非极性分子,根据中心原子的价层电子对数确定杂化方式,根据价层电子对互斥理论确定分子的空间构型,非金属元素的氢化物沸点随着相对分子质量的增大而升高,存在氢键的物质的沸点较高;在氨水中,水分子的氢原子和氨气分子中的氮原子之间存在氢键。

【详解】

(1)氮气和氧气都是双原子分子,同种非金属原子之间存在非极性共价键,所以含有非极性共价键的分子是N2、O2;

故答案为:N2、O2;

(2)甲烷中碳原子和氢原子之间存在极性键;甲烷是正四面体结构,二氧化碳分子中碳原子和氧原子之间存在极性键,二氧化碳是直线型结构,甲烷和二氧化碳分子中正负电荷重心重合,所以甲烷和二氧化碳是非极性分子;

答案为:CH4、CO2;

(3)水分子中价电子数=2+(6-2×1)=4;水分子中含有2个孤电子对,所以氧原子采取sp3杂化,分子空间构型为V型;

答案为:sp3;V型;

(4)氢化物的沸点变化规律的图象中;折线D可以得出该族元素的氢化物的沸点随着原子序数的递增,从上到下是逐渐升高的,符合第IVA元素的性质,甲烷属于第IVA族元素的氢化物,相对分子质量最小,沸点最低,故选D;

答案为D;

(5)氨水中,H2O中H原子与NH3分子中的N原子形成氢键;即O-HN;

答案为:O-HN

【点睛】

本题涉及到了非极性分子的判断、原子的杂化方式、分子的空间构型等知识点,难度不大,原子的杂化方式、分子的空间构型、氢键等知识点是高考的热点,应重点掌握。【解析】①.N2、O2②.CH4、CO2③.sp3V形④.D⑤.O—HN24、略

【分析】【分析】

原子核外有3个电子层、最外层电子数为3,主族元素中原子核外电子层数与其周期数相等、其最外层电子数与其族序数相等,据此判断在周期表中的位置;其3s、3p能级上的电子为其价电子;图1中负离子的中心原子价层电子对个数根据价层电子对互斥理论判断该离子空间构型;

分子晶体熔沸点较低;原子晶体熔沸点较高;

该正离子中N原子价层电子对个数是3且不含孤电子对;根据价层电子对互斥理论判断N原子的杂化方式;环上C原子价层电子对个数是3;乙基中两个C原子价层电子对个数是4,根据价层电子对互斥理论判断C原子的杂化方式;

氮原子上连H原子形成分子间氢键;

同一周期元素;其第一电离能随着原子序数增大而呈增大趋势,但是第IIA族;第VA族元素第一电离能大于其相邻元素;

该晶体堆积方式为六方最密堆积,该六棱柱中N原子个数根据化学式知Al原子个数为6,六棱柱体积氮化铝密度

【详解】

原子核外有3个电子层、最外层电子数为3,主族元素中原子核外电子层数与其周期数相等、其最外层电子数与其族序数相等,据此判断在周期表中的位置为第三周期第IIIA族;其3s、3p能级上的电子为其价电子,其价电子排布式为图1中负离子的中心原子价层电子对个数根据价层电子对互斥理论判断该离子空间构型为正四面体形;

分子晶体熔沸点较低;原子晶体熔沸点较高;氯化铝为分子晶体、氮化铝为原子晶体,所以二者熔沸点相差较大;

该正离子中N原子价层电子对个数是3且不含孤电子对,根据价层电子对互斥理论判断N原子的杂化方式为环上C原子价层电子对个数是3、乙基中两个C原子价层电子对个数是4,根据价层电子对互斥理论判断C原子的杂化方式,前者为杂化、后者为杂化;

氮原子上连H原子形成分子间氢键,防止离子间形成氢键而聚沉或氮原子上连H原子形成分子间氢键,该离子不易以单体形式存在所以与N原子相连的不能被氢原子替换;

同一周期元素,其第一电离能随着原子序数增大而呈增大趋势,但是第IIA族、第VA族元素第一电离能大于其相邻元素,其第一电离能顺序为因为随着核电荷数增加,同周期主族元素的第一电离能逐渐变大,但Mg的3p轨道电子排布为全空结构,能量比Al的更低;所以第一电离能大;

该晶体堆积方式为六方最密堆积,该六棱柱中N原子个数根据化学式知Al原子个数为6,六棱柱体积氮化铝密度

【点睛】

对于六方最密堆积的晶胞来讲,处于六棱柱顶角上的原子是6个晶胞共用的,常见的立方堆积是8个晶胞共用,这其实是因为六边形密铺时每个点被3个六边形共用而正方形密铺时每个点被4个正方形共用对于处于六棱柱面心的原子、体心的原子,其共享方式与立方堆积无异。【解析】第三周期第IIIA族正四面体形氯化铝为分子晶体、氮化铝为原子晶体氮原子上连H原子形成分子间氢键,防止离子间形成氢键而聚沉或氮原子上连H原子形成分子间氢键,该离子不易以单体形式存在六方最密堆积25、略

【分析】【详解】

AlCl3是共价化合物,BeCl2与AlCl3化学性质相似,故BeCl2的化学键是共价键,其在固态时属于分子晶体,故答案为:共价键;分子晶体。【解析】①.共价键②.分子晶体26、略

【分析】【详解】

(1)属于分子的有①⑤⑧,①CO2⑤CS2中只含有极性键;⑧中既含极性键又含非极性共价键,①⑤分子都是直线形分子,正负电荷中心重合,属于非极性分子;故答案为:①⑤。

(2)②NaCl是由钠离子和氯离子构成;③Na是由钠离子和自由电子构成,都含有金属离子;故答案为:②③。

(3)⑧乙醇分子中羟基上的氧原子能形成氢键;故答案为:⑧。

(4)②NaCl⑦(NH4)2SO4都是由阴;阳离子构成的离子晶体;故答案为:②⑦。

(5)④Si⑥金刚石都是由原子构成的原子晶体;故答案为:④⑥。

(6)晶体的熔点:原子晶体>离子晶体>金属晶体>分子晶体,Si是原子晶体,熔点最高,CO2和CS2都是分子晶体,相对分子质量越大熔点越高,Na的熔点低于100℃,所以熔点高到低的顺序为:④>②>③>⑤>①;故答案为:④>②>③>⑤>①。【解析】①.①⑤②.②③③.⑧④.②⑦⑤.④⑥⑥.④>②>③>⑤>①四、原理综合题(共4题,共36分)27、略

【分析】【分析】

(1)硒为34号元素,有6个价电子,据此书写价层电子排布图;同一周期中,元素的第一电离能随着原子序数增大而呈增大趋势,但第ⅤA族元素第一电离能大于相邻元素;气态SeO3分子Se原子孤电子对数==0;价层电子对数=3+0=3,为平面三角形;

(2)确定晶体;非晶体的方法是X射线衍射。

(3)根据(SCN)2分子中分子结构式为N≡C-S-S-C≡N分析;

(4)配合物中配位离子Cl-不与Ag+反应,据此计算出外界离子Cl-离子的数目;据此分析解答;

(5)根据产物FeO的晶格能和CoO的晶格能比较进行分析;

(6)根据均摊法确定微粒个数,即可确定化学式;晶胞参数a=×1010cm。

【详解】

(1)硒为34号元素,有6个价电子,价电子排布图为同一周期中,元素的第一电离能随着原子序数增大而呈增大趋势,但第ⅤA族元素第一电离能大于相邻元素,因此同一周期p区元素第一电离能大于硒的元素有3种,分别为As、Br、Kr;气态SeO3分子Se原子孤电子对数==0;价层电子对数=3+0=3,为平面三角形;

答案:3平面三角形。

(2)确定某种金属互化物是晶体还是非晶体的方法是是X射线衍射。

答案:X射线衍射。

(3)(SCN)2分子中分子结构式为N≡C-S-S-C≡N,每个S原子价层电子对个数是4且含有两个孤电子对,根据价层电子对互斥理论知硫原子的杂化方式为sp3;该分子中σ键和π键数目之比为5:4;

答案:sp3杂化5:4

(4)配合物的物质的量为0.2mol/L×100×10-3L=0.02mol,氯化银的物质的量为配合物中配位离子Cl-不与Ag+反应,1mol该配合物生成2molAgCl沉淀,所以1mol该配合物中含2mol外界离子Cl-,即配离子中含有2个Cl-,该配合物的化学式可写为:[Co(NH3)5Cl]Cl2;中心离子配位数6;

答案:[Co(NH3)5Cl]Cl26

(5)因为Fe2+的半径小于Co2+,所以FeO的晶格能大于CoO,生成物FeO比CoO稳定,所以FeCO3的分解温度低于CoCO3;

答案:Fe2+的半径小于Co2+,FeO的晶格能大于CoO,FeCO3比CoCO3易分解。

(6)根据图示可知晶胞中含4个X、4个Y,每个X中含Fe3+:4×1/8+1=3/2,O2-:4;每个Y中含Fe3+:4×1/8=1/2,Fe2+:4O:4则晶胞中共有Fe3+:4×(3/2+1/2)=8,Fe2+:4×4=16O2-:(4+4)×4=32,晶胞中铁与氧个数比为(8+16):32=3:4,氧化物的化学式为Fe3O4;晶胞参数a==×1010pm=×1010pm

答案:×1010【解析】3平面三角形X射线衍射sp3杂化5:4[Co(NH3)5Cl]Cl26Fe2+的半径小于Co2+,FeO的晶格能大于CoO,FeCO3比CoCO3易分解Fe3O4×101028、略

【分析】【详解】

(1)①基态O原子的核外电子排布为1s22s22p4;分别占据K;L能层,1s、2s、2p三个能级,2p为最高能级排布4个电子,有4种不同的运动状态;答案:2;4。

②CH4是正四面体结构,键角10928,;H2O是V型分子,键角10430,;CO2是直线型分子,键角为180CH4、H2O、CO2分子键角从大到小的顺序是CO2>CH4>H2O;在H3BNH3中的B与N原子之间存在配位键。答案:CO2>CH4>H2O;是。

(2)AlH4-为含有5个原子的阴离子,价电子数为3+14+1=8,与AlH4-互为等电子体的分子有CH4。AlH4-的中心原子价层电子对数为4,且中心原子不含孤对电子,所以其立体构型是正四而体形,Al原子的杂化轨道类型是sp3杂化。金属性越强,电负性越小,其电负性由大到小的顺序为H>Al>Na。答案:CH4;sp3;H>Al>Na。

(3)根据该合金的晶胞图可知,晶胞中心有一个镍原子,其他8个镍原子都在晶胞面上,镧原子都在晶胞顶点,所以晶胞实际含有的镍原子为1+1/28=5,晶胞实际含有的镧原了为81/8=1,所以晶体的化学式LaNi5。答案:LaNi5。

②一个晶胞的质量m=M/NA,根据m=V=Vd即V=M/NAd;答案:M/NAd。

③LaNi5合金储氢后的密度p=m(晶胞中的H)/V(晶胞)=16/[NA(a10-10)2c10-10sin60],由定义式可知储氢能力=

=61030/(NAa2csin60M)【解析】24CO2>CH4>H20是CH4sp3H>Al>NaLaNi5M/NAd61030/(NAa2csin60M)29、略

【分析】【分析】

(1)Fe的电子排布式是[Ar]3d64s2,O2-核外电子总数为10;其原子核外有10种运动状态不同的电子;

(2)PO43-中P原子价层电子对个数=且不含孤电子对,根据价层电子对互斥理论判断该微粒空间构型及P原子的杂化形式;

(3)液态水中分子间相对自由,冰中每个水分子中的氢原子和氧原子共参与形成4个氢键,水分子形成正四面体,使水分子之间间隙增大,密度变小,导致固态H2O的密度比其液态时小,H2O2为极性分子,而CS2为非极性溶剂,根据“相似相溶”规律可知;

(4)晶格能是气态离子形成1mol离子晶体释放的能量。

(5)①有一个Ti原子位于体心,在三维坐标中,体心Ti原子可以形成3个面,每一个形成的面上有4个Ti原子;由晶胞的截图可知;顶点Ti原子与小立方体顶点P原子最邻近,与体对角线的P原子次近邻;

②磷化钛晶胞为面心立方密堆积;晶胞中P原子位于顶点和面心上,Ti位于棱边上和体内,利用均摊法计算。

【详解】

(1)Fe的电子排布式是[Ar]3d64s2,价电子轨道表示式(电子排布图)为故答案为:O2-核外电子总数为10;其原子核外有10种运动状态不同的电子,故答案为10;

(2)紫红色波长介于380-435nm之间,是一种发射光谱,故答案为:发射;PO43-中P原子价层电子对个数=且不含孤电子对,据价层电子对互斥理论判断该微粒VSEPR模型为正四面体形、P原子的杂化形式为sp3;故答案为正四面体、sp3;

(3)液态水中分子间相对自由,冰中每个水分子中的氢原子和氧原子共参与形成4个氢键,水分子形成正四面体,使水分子之间间隙增大,密度变小,导致固态H2O的密度比其液态时小,故答案为:液态水中分子间相对自由,冰中每个水分子中的氢原子和氧原子共参与形成4个氢键,水分子形成正四面体,分子间距离增大,密度减小;H2O2为极性分子,而CS2为非极性溶剂,根据“相似相溶”规律可知,H2O2难溶于CS2;

故答案为:H2O2为极性分子,CS2为非极性分子,根据相似相溶原理,H2O2难溶于CS2;

(4)图中:2Li(晶体)+1/2O2(g)=Li2O(晶体)的△H=-598KJ·mol−1,Li原子的第一电离能为Li原子失去1个电子所需要的能量,所以其第一电离能为1040/2kJ·mol-1=520kJ·mol-1;O=O键键能为氧气分子变为氧原子所需能量,其键能=2×249kJ·mol-1=498kJ·mol-1;晶格能是气态离子形成1mol离子晶体释放的能量,所以其晶格能为2908kJ·mol-1;故答案为:2908;

(5)①根据磷化钛晶体可知,有一个Ti原子位于体心,在三维坐标中,体心Ti原子可以形成3个面,每一个形成的面上有4个Ti原子,则该Ti原子最邻近的Ti的数目为3×4=12个;由晶胞的截图可知,顶点Ti原子与小立方体顶点P原子最邻近,与体对角线的P原子次近邻,Ti原子与跟它最邻近的P原子之间的距离为r,则跟它次邻近的P原子之间的距离为=r,故答案为:12;r;

②磷化钛晶胞为面心立方密堆积,晶胞中P原子位于顶点和面心上,Ti位于棱边上和体内,每个晶胞中含有的P原子个数为8×+6×=4,含有的Ti原子个数为12×+1=4,P原子和Ti原子的体积之和为π(a+b)3×4pm3,晶胞的边长(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论