![近十年陕西中考数学真题及答案2024_第1页](http://file4.renrendoc.com/view10/M01/2F/34/wKhkGWeazd-AWWD2AAF7J5PvQPI963.jpg)
![近十年陕西中考数学真题及答案2024_第2页](http://file4.renrendoc.com/view10/M01/2F/34/wKhkGWeazd-AWWD2AAF7J5PvQPI9632.jpg)
![近十年陕西中考数学真题及答案2024_第3页](http://file4.renrendoc.com/view10/M01/2F/34/wKhkGWeazd-AWWD2AAF7J5PvQPI9633.jpg)
![近十年陕西中考数学真题及答案2024_第4页](http://file4.renrendoc.com/view10/M01/2F/34/wKhkGWeazd-AWWD2AAF7J5PvQPI9634.jpg)
![近十年陕西中考数学真题及答案2024_第5页](http://file4.renrendoc.com/view10/M01/2F/34/wKhkGWeazd-AWWD2AAF7J5PvQPI9635.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年陕西中考数学试题及答案注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B)3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.的倒数是()A. B. C. D.2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A. B. C. D.3.如图,,,,则的度数为()A. B. C. D.4.不等式的解集是()A. B. C. D.5.如图,在中,,是边上的高,E是的中点,连接,则图中的直角三角形有()A.2个 B.3个 C.4个 D.5个6.一个正比例函数的图象经过点和点,若点A与点B关于原点对称,则这个正比例函数的表达式为()A. B. C. D.7.如图,正方形的顶点G在正方形的边上,与交于点H,若,,则的长为()A2 B.3 C. D.8.已知一个二次函数的自变量x与函数y的几组对应值如下表,x…035…y…0…则下列关于这个二次函数的结论正确的是()A.图象的开口向上 B.当时,y的值随x的值增大而增大C.图象经过第二、三、四象限 D.图象对称轴是直线第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.分解因式:=_______________.10.小华探究“幻方”时,提出了一个问题:如图,将0,,,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)11.如图,是的弦,连接,,是所对的圆周角,则与的和的度数是________.12.已知点和点均在反比例函数的图象上,若,则________0.13.如图,在中,,E是边上一点,连接,在右侧作,且,连接.若,,则四边形的面积为________.三、解答题(共13小题,计81分。解答题应写出过程)14.计算:.15.先化简,再求值:,其中,.16解方程:.17.如图,已知直线l和l外一点A,请用尺规作图法,求作一个等腰直角,使得顶点B和顶点C都在直线l上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)18.如图,四边形是矩形,点E和点F在边上,且.求证:.19.一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次.(1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________.(2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率.20.星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需;若爸爸单独完成,需.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了,求这次小峰打扫了多长时间.21.如图所示,一座小山顶的水平观景台的海拔高度为,小明想利用这个观景台测量对面山顶C点处的海拔高度,他在该观景台上选定了一点A,在点A处测得C点的仰角,再在上选一点B,在点B处测得C点的仰角,.求山顶C点处的海拔高度.(小明身高忽略不计,参考数据:,,)22.我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是,行驶了后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量与行驶路程之间的关系如图所示.(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.23.水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况,他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表:组别用水量组内平均数ABCD根据以上信息,解答下列问:(1)这30个数据的中位数落在________组(填组别);(2)求这30户家庭去年7月份的总用水量;(3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少?24.如图,直线l与相切于点A,是直径,点C,D在l上,且位于点A两侧,连接,分别与交于点E,F,连接.(1)求证:;(2)若的半径,,,求的长.25.一条河上横跨着一座宏伟壮观悬索桥.桥梁的缆索与缆索均呈抛物线型,桥塔与桥塔均垂直于桥面,如图所示,以O为原点,以直线为x轴,以桥塔所在直线为y轴,建立平面直角坐标系.
已知:缆索所在抛物线与缆索所在抛物线关于y轴对称,桥塔与桥塔之间的距离,,缆索的最低点P到的距离(桥塔的粗细忽略不计)(1)求缆索所在抛物线的函数表达式;(2)点E在缆索上,,且,,求的长.26.问题提出(1)如图1,在中,,,作的外接圆.则的长为________;(结果保留π)问题解决(2)如图2所示,道路的一侧是湿地.某生态研究所在湿地上建有观测点D,E,C,线段和为观测步道,其中点A和点B为观测步道出入口,已知点E在上,且,,,,,现要在湿地上修建一个新观测点P,使.再在线段上选一个新的步道出入口点F,并修通三条新步道,使新步道经过观测点E,并将五边形的面积平分.请问:是否存在满足要求的点P和点F?若存在,求此时的长;若不存在,请说明理由.(点A,B,C,P,D在同一平面内,道路与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)
2024年陕西省初中学业水平考试数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B)3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)【9题答案】【答案】a(a﹣b).【10题答案】【答案】0【11题答案】【答案】##90度【12题答案】【答案】##小于【13题答案】【答案】60三、解答题(共13小题,计81分。解答题应写出过程)【14题答案】【答案】【15题答案】【答案】,6【16题答案】【答案】【17题答案】【答案】见解析【18题答案】【答案】见解析【19题答案】【答案】(1)0.3(2)【20题答案】【答案】小峰打扫了.【21题答案】【答案】山顶C点处的海拔高度为.【22题答案】【答案】(1)y与x之间的关系式为;(2)该车的剩余电量占“满电量”的.【23题答案】【答案】(1)B(2)(3)【24题答案】【答案】(1)见解析(2).【25题答案】【答案】(1);(2)的长为.【26题答案】【答案】(1);(2)存在满足要求的点P和点F,此时的长为.
2023年陕西中考数学真题及答案A卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.计算:()A.2 B. C.8 D.【答案】B2.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.【答案】C3.如图,,.若,则的度数为()A. B. C. D.【答案】A4.计算:()A. B. C. D.【答案】B5.在同一平面直角坐标系中,函数和(为常数,)的图象可能是()A. B.C. D.【答案】D6.如图,是的中位线,点在上,.连接并延长,与的延长线相交于点.若,则线段的长为()A. B.7 C. D.8【答案】C7.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是的一部分,是的中点,连接,与弦交于点,连接,.已知cm,碗深,则的半径为()A.13cm B.16cm C.17cm D.26cm【答案】A8.在平面直角坐标系中,二次函数(为常数)的图像经过点,其对称轴在轴左侧,则该二次函数有()A.最大值 B.最大值 C.最小值 D.最小值【答案】D二、填空题(共5小题,每小题3分,计15分)9.如图,在数轴上,点A表示,点B与点A位于原点两侧,且与原点的距离相等.则点B表示的数是__.【答案】10.如图,正八边形的边长为2,对角线、相交于点.则线段的长为___.【答案】11.点是菱形的对称中心,,连接,则的度数为___.【答案】62°12.如图,在矩形和正方形中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边上,,.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.【答案】13.如图,在矩形中,,.点在边上,且,、分别是边、上的动点,且,是线段上的动点,连接,.若.则线段的长为___.【答案】三、解答题(共13小题,计81分.解答应写出过程)14.解不等式:.【答案】15.计算:.【答案】16.化简:.【答案】17.如图.已知锐角,,请用尺规作图法,在内部求作一点.使.且.(保留作图痕迹,不写作法)【答案】见解析【解析】分析】先作的平分线,再作的垂直平分线,直线交于点,则点满足条件.【详解】解:如图,点即为所求.18.如图,在中,,.过点作,垂足为,延长至点.使.在边上截取,连接.求证:.【答案】见解析【解析】【分析】利用三角形内角和定理得的度数,再根据全等三角形的判定与性质可得结论.【详解】证明:在中,,,...,.在和中,,∴..19.一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3,这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.【答案】(1)(2)20.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【答案】8元21.一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高.如图所示,当小明爸爸站在点处时,他在该景观灯照射下的影子长为,测得;当小明站在爸爸影子的顶端处时,测得点的仰角为.已知爸爸的身高,小明眼睛到地面的距离,点、、在同一条直线上,,,.求该景观灯的高.(参考数据:,,【答案】22.经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高是其胸径的一次函数.已知这种树的胸径为时,树高为;这种树的胸径为时,树高为.(1)求y与x之间的函数表达式;(2)当这种树的胸径为时,其树高是多少?【答案】(1)(2)23.某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64,通过对以上数据的分析整理,绘制了统计图表:分组频数组内小西红柿的总个数12815494526366根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.【答案】(1)54(2)50(3)15000个24.如图,内接于,,过点作的垂线,交于点,并与的延长线交于点,作,垂足为,交于点.(1)求证:;(2)若的半径,,求线段的长.【答案】(1)见解析(2)【解析】【小问1详解】证明:如图,连接,则,,,.;25.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度,拱高.其中,点N在x轴上,,.方案二,抛物线型拱门的跨度,拱高.其中,点在x轴上,,.要在拱门中设置高为的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架的面积记为,点A、D在抛物线上,边在上;方案二中,矩形框架的面积记为,点,在抛物线上,边在上.现知,小华已正确求出方案二中,当时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当时,求矩形框架的面积并比较,的大小.【答案】(1)(2),26.(1)如图①,在中,,,.若的半径为4,点在上,点在上,连接,求线段的最小值;(2)如图②所示,五边形是某市工业新区的外环路,新区管委会在点处,点处是该市的一个交通枢纽.已知:,,.根据新区的自然环境及实际需求,现要在矩形区域内(含边界)修一个半径为的圆型环道;过圆心,作,垂足为,与交于点.连接,点在上,连接.其中,线段、及是要修的三条道路,要在所修道路、之和最短的情况下,使所修道路最短,试求此时环道的圆心到的距离的长.【答案】(1);(2)
2022年陕西中考数学真题及答案注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共8页,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B).3.请在答题卡上各题的指定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔搭黑.5.考试结束,本试卷和答题卡一并交回.第一部分(选择题)一、选择题共8小题,每小题只有一个选项是符合题意的)1.的相反数是()A. B.37 C. D.【答案】B2.如图,.若,则的大小为()
A. B. C. D.【答案】B3.计算:()A. B. C. D.【答案】C4.在下列条件中,能够判定为矩形的是()A. B. C. D.【答案】D5.如图,是高,若,,则边的长为()A. B. C. D.【答案】D6.在同一平面直角坐标系中,直线与相交于点,则关于x,y的方程组的解为()A. B. C. D.【答案】C7.如图,内接于⊙,连接,则()A. B. C. D.【答案】A8.已知二次函数y=x2−2x−3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当−1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A B. C. D.【答案】B第二部分(非选择题)二、填空题(共5小题)9.计算:______.【答案】10.实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)【答案】<11.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E为边的黄金分割点,即.已知为2米,则线段的长为______米.【答案】##12.已知点A(−2,m)在一个反比例函数的图象上,点A′与点A关于y轴对称.若点A′在正比例函数的图象上,则这个反比例函数的表达式为_______.【答案】y=13.如图,在菱形中,.若M、N分别是边上的动点,且,作,垂足分别为E、F,则的值为______.
【答案】三、解答题(共13小题,解答应写出过程)14.计算:.【答案】15.解不等式组:【答案】16.化简:.【答案】17.如图,已知是的一个外角.请用尺规作图法,求作射线,使.(保留作图痕迹,不写作法)【答案】见解析【详解】解:如图,射线即为所求作.18.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.
【答案】证明见解析【详解】证明:∵DE∥AB,∴∠EDC=∠B.又∵CD=AB,∠DCE=∠A,∴△CDE≌△ABC(ASA).∴DE=BC.19.如图,的顶点坐标分别为.将平移后得到,且点A的对应点是,点B、C的对应点分别是.(1)点A、之间的距离是__________;(2)请在图中画出.【答案】(1)4(2)见解析【小问2详解】解:由题意,得,如图,即为所求.20.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是______;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.【答案】(1)(2)见解析,【小问2详解】解:列表如下:第二个第一个66778612131314612131314713131415713131415814141515由列表可知,共有20种等可能的结果,其中两个西瓜的重量之和为15kg的结果有4种.∴.21.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.【答案】旗杆的高AB为3米.22.如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输人x…02…输出y…2616…根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.【答案】(1)8(2)(3)23.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A850B1675C40105D36150根据上述信息,解答下列问题:(1)这100名学生“劳动时间”的中位数落在__________组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.【答案】(1)C(2)112分钟(3)912人24.如图,是⊙的直径,是⊙的切线,、是⊙的弦,且,垂足为E,连接并延长,交于点P.(1)求证:;(2)若⊙的半径,求线段的长.【答案】(1)见解析(2)【小问1详解】证明:∵是的切线,∴.∵∴,∴.∴.∵,∴.25.现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.【答案】(1)(2)26.问题提出(1)如图1,是等边的中线,点P在的延长线上,且,则的度数为__________.问题探究(2)如图2,在中,.过点A作,且,过点P作直线,分别交于点O、E,求四边形的面积.问题解决(3)如图3,现有一块型板材,为钝角,.工人师傅想用这块板材裁出一个型部件,并要求.工人师傅在这块板材上的作法如下:①以点C为圆心,以长为半径画弧,交于点D,连接;②作的垂直平分线l,与于点E;③以点A为圆心,以长为半径画弧,交直线l于点P,连接,得.请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论.【答案】(1)(2)(3)符合要求,理由见解析【小问3详解】解:符合要求.由作法,知.∵,∴.如图3,以为边,作正方形,连接.图3∴.∵l是的垂直平分线,∴l是的垂直平分线.∴.∴为等边三角形.∴,∴,∴.∴裁得的型部件符合要求.
2021年陕西中考数学真题及答案一、选择题(共8小题,每小题3分,计24分。每小题只有一个选项是符合题意的)1.计算:3×(﹣2)=()A.1 B.﹣1 C.6 D.﹣62.下列图形中,是轴对称图形的是()A. B. C. D.3.计算:(a3b)﹣2=()A. B.a6b2 C. D.﹣2a3b4.如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠C=50°,则∠1的大小为()A.60° B.70° C.75° D.85°5.在菱形ABCD中,∠ABC=60°,连接AC、BD,则()A. B. C. D.6.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象()A.﹣5 B.5 C.﹣6 D.67.如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm8.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下 B.这个函数的图象与x轴无交点 C.这个函数的最小值小于﹣6 D.当x>1时,y的值随x值的增大而增大二、填空题(共5小题,每小题3分,计15分)9.分解因式x3+6x2+9x=.10.正九边形一个内角的度数为.11.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为.12.若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1y2.(填“>”、“=”或“<”)13.如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切).三、解答题(共13小题,计18分。解答应写出过程)14.(5分)计算:(﹣)0+|1﹣|﹣.15.(5分)解不等式组:.16.(5分)解方程:﹣=1.17.(5分)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)18.(5分)如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.19.(5分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.20.(5分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,求抽取的这两张牌的牌面数字恰好相同的概率.21.(6分)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线(结果保留根号)22.(7分)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.23.(7分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.24.(8分)如图,AB是⊙O的直径,点E、F在⊙O上,且,连接OE、AF,过点B作⊙O的切线(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.25.(8分)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求点B、C的坐标;(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PC与PO是对应边?若存在;若不存在,请说明理由.26.(10分)问题提出(1)如图1,在▱ABCD中,∠A=45°,AD=6,E是AD的中点,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,∠A=∠B=∠C=90°,AB=800m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离,请说明理由.
2021年陕西省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,计24分。每小题只有一个选项是符合题意的)1.计算:3×(﹣2)=()A.1 B.﹣1 C.6 D.﹣6【分析】根据有理数乘法法则进行运算.【解答】解:3×(﹣2)=﹣4.故选:D.2.下列图形中,是轴对称图形的是()A. B. C. D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A.不是轴对称图形;B.是轴对称图形;C.不是轴对称图形;D.不是轴对称图形;故选:B.3.计算:(a3b)﹣2=()A. B.a6b2 C. D.﹣2a3b【分析】直接利用负整数指数幂的性质分别化简得出答案.【解答】解:(a3b)﹣2==.故选:A.4.如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠C=50°,则∠1的大小为()A.60° B.70° C.75° D.85°【分析】由三角形的内角和定义,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∵∠1=∠B+∠ADB,∠ADB=∠A+∠C,∴∠1=180°﹣(∠B+∠A+∠C),∴∠2=180°﹣(25°+35°+50°),∴∠1=180°﹣110°,∴∠1=70°,故选:B.5.在菱形ABCD中,∠ABC=60°,连接AC、BD,则()A. B. C. D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.6.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象()A.﹣5 B.5 C.﹣6 D.6【分析】根据平移的规律得到平移后抛物线的解析式为y=2(x+3)+m﹣1,然后把原点的坐标代入求值即可.【解答】解:将一次函数y=2x+m﹣1的图象向左平移8个单位后,得到y=2(x+3)+m﹣5,把(0,0)代入,解得m=﹣8.故选:A.7.如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM⊥AC于M,过D作DN⊥CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得△BCM≌△CDN,得到BM=CN,在Rt△BCM中,根据勾股定理求出BM=4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,过B作BM⊥AC于M,过D作DN⊥CE于N,则∠BMC=∠CND=90°,AM=CM=×5=3,∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN,在△BCM和△CDN中,,∴△BCM≌△CDN(AAS),∴BM=CN,在Rt△BCM中,∵BM=5,CM=2,∴BM===4,∴CN=4,∴CE=4CN=2×4=8,故选:D.8.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下 B.这个函数的图象与x轴无交点 C.这个函数的最小值小于﹣6 D.当x>1时,y的值随x值的增大而增大【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.【解答】解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∴二次函数的解析式为y=x2﹣8x﹣4=(x﹣4)(x+2)=(x﹣)4﹣,∴(1)函数图象开口向上,(2)与x轴的交点为(4,4)和(﹣1,(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当当x>时,故选:C.二、填空题(共5小题,每小题3分,计15分)9.分解因式x3+6x2+9x=x(x+3)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=x(9+6x+x5)=x(x+3)2.故答案为x(x+5)210.正九边形一个内角的度数为140°.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.11.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+3=0+a﹣4,解得:a=﹣7.故答案为:﹣2.12.若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)【分析】反比例函数的系数为﹣2<0,在每一个象限内,y随x的增大而增大.【解答】解:∵2m﹣1<2(m<),∴图象位于二、四象限,y随x的增大而增大,又∵8<1<3,∴y5<y2,故答案为:<.13.如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切)3+1.【分析】当⊙O与CB、CD相切时,点A到⊙O上的点Q的距离最大,如图,过O点作OE⊥BC于E,OF⊥CD于F,根据切线的性质得到OE=OF=1,利用正方形的性质得到点O在AC上,然后计算出AQ的长即可.【解答】解:当⊙O与CB、CD相切时,如图,过O点作OE⊥BC于E,OF⊥CD于F,∴OE=OF=1,∴OC平分∠BCD,∵四边形ABCD为正方形,∴点O在AC上,∵AC=BC=5OE=,∴AQ=OA+OQ=4﹣+1=3,即点A到⊙O上的点的距离的最大值为3+3,故答案为3+2.三、解答题(共13小题,计18分。解答应写出过程)14.(5分)计算:(﹣)0+|1﹣|﹣.【分析】直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣3﹣2=﹣.15.(5分)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+5<4,得:x<﹣8,解不等式≥2x﹣1,∴不等式组的解集为x<﹣2.16.(5分)解方程:﹣=1.【分析】方程两边都乘以(x+1)(x﹣1)得出(x﹣1)2﹣3=(x+1)(x﹣1),求出方程的解,再进行检验即可.【解答】解:方程两边都乘以(x+1)(x﹣1)得:(x﹣7)2﹣3=(x+7)(x﹣1),x2﹣8x+1﹣3=x3﹣1,x2﹣2x﹣x2=﹣1﹣8+3,﹣2x=3,x=﹣,检验:当x=﹣时,(x+1)(x﹣3)≠0,所以x=﹣是原方程的解.17.(5分)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)【分析】作线段AB的垂直平分线得到线段AB的中点,则中点为P点.【解答】解:如图,点P为所作.18.(5分)如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.【分析】先根据平行线的性质得到∠ACB=∠EBD,然后根据“SAS”可判断△ABC≌△EDB,从而根据全等三角形的性质得到结论.【解答】证明:∵BD∥AC,∴∠ACB=∠EBD,在△ABC和△EDB中,,∴△ABC≌△EDB(SAS),∴∠ABC=∠D.19.(5分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【分析】设这种服装每件的标价是x元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;【解答】解:设这种服装每件的标价是x元,根据题意得,10×0.8x=11(x﹣30),解得x=110,答:这种服装每件的标价为110元.20.(5分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,求抽取的这两张牌的牌面数字恰好相同的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,再由概率公式求解即可.【解答】解:(1)将这四张扑克牌背面朝上,洗匀,则抽取的这张牌的牌面数字是3的概率为=,故答案为:;(2)画树状图如图:共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,∴抽取的这两张牌的牌面数字恰好相同的概率为=.21.(6分)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线(结果保留根号)【分析】本题设AD=x,在等腰直角三角形ADC中表示出CD,从而可以表示出BD,再在Rt△ABD中利用三角函数即可求出x的长,进而即可求出AB的长度.【解答】解:在△ADC中,设AD=x,∵AD⊥BD,∠ACD=45°,∴CD=AD=x,在△ADB中,AD⊥BD,∴AD=BD•tan30°,即x=(16+x),解得:x=2+8,∴AB=7AD=2×(8)=16,∴钢索AB的长度约为(16)m.22.(7分)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为19.5℃,众数为19℃;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.【分析】(1)根据中位数和众数的概念求解即可;(2)根据加权平均数的定义列式计算即可;(3)用样本中气温在18℃~21℃的范围内的天数所占比例乘以今年9月份的天数即可.【解答】解:(1)这60天的日平均气温的中位数为=19.5(℃),故答案为:19.7℃,19℃;(2)这60天的日平均气温的平均数为×(17×8+18×12+19×13+20×9+21×6+22×8+23×6+24×5)=20(℃);(3)∵×30=20(天),∴估计西安市今年9月份日平均气温为“舒适温度”的天数为20天.23.(7分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.【分析】(1)由图象求出“猫”和“鼠”的速度即可;(2)先设出函数关系式,用待定系数法求出函数解析式即可;(3)令(2)中解析式y=0,求出x即可.【解答】解:(1)由图像知:“鼠”6min跑了30m,∴“鼠”的速度为:30÷6=5(m/min),“猫”5min跑了30m,∴“猫”的速度为:30÷5=5(m/min),∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),故答案为:1;(2)设AB的解析式为:y=kx+b,∵图象经过A(4,30)和B(10,把点A和点B坐标代入函数解析式得:,解得:,∴AB的解析式为:y=﹣7x+58;(3)令y=0,则﹣4x+58=7,∴x=14.5,∵“猫”比“鼠”迟一分钟出发,∴“猫”从起点出发到返回至起点所用的时间为14.5﹣5=13.5(min).答:“猫”从起点出发到返回至起点所用的时间13.5min.24.(8分)如图,AB是⊙O的直径,点E、F在⊙O上,且,连接OE、AF,过点B作⊙O的切线(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.【分析】(1)取的中点M,连接OM、OF,利用圆心角定理得到∠COB=∠BOF,利用圆周角定理得到∠A=∠COF,从而得到结论;(2)连接BF,如图,先根据切线的性质得到∠OBC=∠ABD=90°,则可判断△OBC∽△ABD,利用相似比求出BD=8,则利用勾股定理可计算出AD=10,接着利用圆周角定理得∠AFB=90°,则可判断Rt△DBF∽Rt△DAB,然后利用相似比可计算出DF的长.【解答】(1)证明:取的中点M、OF,∵=2,∴==,∴∠COB=∠BOF,∵∠A=∠COF,∴∠COB=∠A;(2)解:连接BF,如图,∵CD为⊙O的切线,∴AB⊥CD,∴∠OBC=∠ABD=90°,∵∠COB=∠A,∴△OBC∽△ABD,∴=,即=,解得BD=2,在Rt△ABD中,AD==,∵AB是⊙O的直径,∴∠AFB=90°,∵∠BDF=∠ADB,∴Rt△DBF∽Rt△DAB,∴=,即=,解得DF=.25.(8分)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求点B、C的坐标;(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PC与PO是对应边?若存在;若不存在,请说明理由.【分析】(1)直接根据解析式即可求出B,C的坐标;(2)先设出P的坐标,根据相似三角形的性质列出方程,解出方程即可得到点P的坐标.【解答】解:(1)∵y=﹣x2+2x+3,取x=0,得y=8,∴C(8,8),取y=0,得﹣x5+2x+8=5,解得:x1=﹣2,x6=4,∴B(4,6);(2)存在点P,设P(0,∵CC'∥OB,且PC与PO是对应边,∴,即:,解得:y1=16,,∴P(0,16)或P(2,).26.(10分)问题提出(1)如图1,在▱ABCD中,∠A=45°,AD=6,E是AD的中点,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,∠A=∠B=∠C=90°,AB=800m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离,请说明理由.【分析】(1)过点A作AH⊥CD交CD的延长线于H,先求出AH=3,同理EG=,最后用面积的差即可得出结论;(2)分别延长AE,与CD,交于点K,则四边形ABCK是矩形,设AN=x米,则PC=x米,BO=2x米,BN=(800﹣x)米,AM=OC=(1200﹣2x)米,MK=2x米,PK=(800﹣x)米,进而得出S四边形OPMN=4(x﹣350)2+470000,即可得出结论.【解答】解:(1)如图1,过点A作AH⊥CD交CD的延长线于H,∴∠H=90°,∵四边形ABCD是平行四边形,∴CD=AB=8,AB∥CD,∴∠ADH=∠BAD=45°,在Rt△ADH中,AD=2,∴AH=AD•sinA=6×sin45°=3,∵点E是AD的中点,∴DE=AD=8,同理EG=,∵DF=5,∴FC=CD﹣DF=3,∴S四边形ABFE=S▱ABCD﹣S△DEF﹣S△BFC=7×3﹣×5×﹣=;(2)存在,如图2,分别延长AE,与CD,则四边形ABCK是矩形,∴AK=BC=1200米,AB=CK=800米,设AN=x米,则PC=x米,BN=(800﹣x)米,∴MK=AK﹣AM=1200﹣(1200﹣5x)=2x米,PK=CK﹣CP=(800﹣x)米,∴S四边形OPMN=S矩形ABCK﹣S△AMN﹣S△BON﹣S△OCP﹣S△PKM=800×1200﹣x(1200﹣2x)﹣x(1200﹣6x)﹣=7(x﹣350)2+470000,∴当x=350时,S四边形OPMN最小=470000(平方米),AM=1200﹣2x=1200﹣7×350=500<900,CP=x=350<600,∴符合设计要求的四边形OPMN面积的最小值为47000平方米,此时.
2019陕西省中考数学真题及答案注意事项:1、本试卷分为第一部分(选择题)和第二部分(非选择题)。全卷共8页,总分120分。考试时间120分钟。2、领取试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡填涂对应的试卷类型信息点(A或B)。3、请在答题卡上各题的指定区域内作答,否则作答无效。4、作图时,先用铅笔作图,再用规定签字笔描黑。5、考试结束,本试卷和答题卡一并交回。第一部分(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(-3)0=【A】A.1 B.0 C.3 D.-EQ\f(1,3)2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【D】3.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为【C】A.52° B.54° C.64° D.69°4.若正比例函数y=-2x的图象经过点(a-1,4),则a的值为【A】A.-1 B.0C.1 D.25.下列计算正确的是【D】A.2a2·3a2=6a2 B.(-3a2b)2=6a4b2C.(a-b)2=a2-b2 D.-a2+2a2=a26.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC,交BC于点D,DE⊥AB,垂足为E,若DE=1,则BC的长为【A】A.2+EQ\r(,2) B.EQ\r(,2)+EQ\r(,3)C.2+EQ\r(,3) D.37.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴交点的坐标为【B】A.(2,0) B.(-2,0) C.(6,0) D.(-6,0)8.如图,在矩形ABCD中,AB=3,BC=6.若点E、F分别在AB、CD上,且BE=2AE,DF=2FC,G、H分别是AC的三等分点,则四边形EHFG的面积为【C】A.1 B.EQ\f(3,2)C.2 D.4BE=2AE,DF=2FC,G、H分别是AC的三等分点∴E是AB的三等分点,F是CD的三等分点∴EG∥BC且EG=-EQ\f(1,3)BC=2同理可得HF∥AD且HF=-EQ\f(1,3)AD=2∴四边形EHFG为平行四边形EG和HF间距离为1S四边形EHFG=2×1=29.如图,AB是⊙O的直径,EF、EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是【B】A.20° B.35° C.40° D.55°连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°10.在同一平面直角坐标系中,若抛物线y=x2+(2m-1)x+2m-4与y=x2-(3m+n)x+n关于y轴对称,则符合条件的m、n的值为【D】A.m=EQ\f(5,7),n=-EQ\f(18,7) B.m=5,n=-6C.m=-1,n=6 D.m=1,n=-2关于y轴对称,a,c不变,b变为相反数,列方程组求m,n第二部分(非选择题共90分)二、填空题(共4小题,每小题3分,计12分)11.已知实数-EQ\f(1,2),0.16,EQ\r(,3),π,EQ\r(,25),EQ\r(3,4),其中为无理数的是EQ\r(,3),π,EQ\r(3,4).12.若正六边形的边长为3,则其较长的一条对角线长为6.13.如图,D是矩形AOBC的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为eq\b\bc\((\f(3,2),4). 14.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6,P为对角线BD上一点,则PM-PN的最大值为2.三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:-2×EQ\r(3,-27)+|1-EQ\r(,3)|-eq\b\bc\((\f(1,2))\s\up10(-2)原式=-2×(-3)+EQ\r(,3)-1-4=1+EQ\r(,3)16.(本题满分5分)化简:eq\b\bc\((\f(a-2,a+2)+\f(8a,a2-4))÷EQ\f(a+2,a2-2a)原式=EQ\f((a+2)2,(a-2)(a+2))×EQ\f(a(a-2),a+2)=a17.(本题满分5分)如图,在△ABC中,AB=AC,AD是BC边上的高,请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)18.(本题满分5分)如图,点A、E、F、B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.证明:∵AE=BF,∴AF=BE∵AC∥BD,∴∠CAF=∠DBE又AC=BD,∴△ACF≌△BDE∴CF=DE19.(本题满分7分)本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.解:(1)补全两幅统计图(2)∵18÷30%=60∴平均数=(1×3+2×18+3×21+4×12+5×6)÷60=3本∴本次所抽取的学生四月份“读书量”的平均数为3本(3)∵1200×10%=120(人),∴估计该校七年级学生中,四月份“读书量”为5本的学生有120人20.(本题满分7分)小明想利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学们带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是,他们先在古树周围的空地上选择了一点D,并在点D处安装了测倾器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5m,并在点G处的地面上水平放置了一个小平面镜,小明沿BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2m,小明眼睛与地面的距离EF=1.6m,测倾器的高度CD=0.5m.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高AB.(小平面镜的大小忽略不计)解:过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5在Rt△ACH中,∠ACH=45°,∴AH=CH=BD∴AB=AH+BH=BD+0.5∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由题意,易知∠EGF=∠AGB,∴△EFG∽△ABC∴EQ\f(EF,AB)=EQ\f(FG,BG)即EQ\f(1.6,BD+0.5)=EQ\f(2,5+BD)解之,得BD=17.5∴AB=17.5+0.5=18(m).∴这棵古树的高AB为18m.21.(本题满分7分)根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知道距地面11km以上的高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃).(1)写出距地面的高度在11km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距地面的高度为7km,求当时这架飞机下方地面的气温.小敏想,假如飞机当时在距地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距地面12km时,飞机外的气温.解:(1)y=m-6x(2)将x=7,y=-26代入y=m-6x,得-26=m-42,∴m=16∴当时地面气温为16℃∵x=12>11,∴y=16-6×11=-50(℃)假如当时飞机距地面12km时,飞机外的气温为-50℃22.(本题满分7分)现有A、B两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.(1)将A袋摇匀,然后从A袋中随机摸出一个小球,求摸出的小球是白色的概率;(2)小林和小华商定了一个游戏规则:从摇匀后的A、B两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画树状图的方法说明这个游戏规则对双方是否公平.解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P(摸出白球)=EQ\f(2,3)(2)根据题意,列表如下:AB红1红2白白1(白1,红1)(白1,红2)(白1,白)白2(白2,红1)(白2,红2)(白2,白)红(红,红1)(红,红2)(红,白)由上表可知,共有9种等可能结果,其中颜色相同的结果有4种,颜色不同的结果有5种∴P(颜色相同)=EQ\f(4,9),P(颜色不同)=EQ\f(5,9)∵EQ\f(4,9)<EQ\f(5,9)∴这个游戏规则对双方不公平23.(本题满分8分)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线,作BM=AB,并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.(1)证明:∵AP是⊙O的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°.又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE(2)解:连接BC∵AC是⊙O的直径,∴∠ABC=90°在Rt△ABC中,AC=10,AB=6,∴BC=8由(1)知,∠BAE=∠AEB,∴△ABC∽△EAM∴∠C=∠AME,EQ\f(AC,EM)=EQ\f(BC,AM)即EQ\f(10,12)=EQ\f(8,AM)∴AM=EQ\f(48,5)又∵∠D=∠C,∴∠D=∠AMD∴AD=AM=EQ\f(48,5)24.(本题满分10分)在平面直角坐标系中,已知抛物线L:y=ax2+(c-a)x+c经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为L′.(1)求抛物线L的表达式;(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似.求符合条件的点P的坐标.解:(1)由题意,得EQ\B\lc\{(\a\al\co2(9a-3(c-a)+c=0,,c=-6,)),解之,得EQ\B\lc\{(\a\al\co2(a=-1,,c=-6,)),∴L:y=-x2-5x-6(2)∵点A、B在L′上的对应点分别为A′(3,0)、B′(0,6)∴设抛物线L′的表达式y=x2+bx+6将A′(-3,0)代入y=x2+bx+6,得b=-5.∴抛物线L′的表达式为y=x2-5x+6A(-3,0),B(0,-6),∴AO=3,OB=6.设P(m,m2-5m+6)(m>0).∵PD⊥y轴,∴点D的坐标为(0,m2-5m+6)∵PD=m,OD=m2-5m+6Rt△POD与Rt△AOB相似,∴EQ\f(PD,AO)=EQ\f(OD,BO)或EQ\f(PD,BO)=EQ\f(OD,AO)①当EQ\f(PD,AO)=EQ\f(OD,BO)时,即EQ\f(m,3)=EQ\f(m2-5m+6,6),解之,得m1=1,m2=6∴P1(1,2),P2(6,12)②当EQ\f(PD,BO)=EQ\f(OD,AO)时,即EQ\f(m,6)=EQ\f(m2-5m+6,3),解之,得m3=EQ\f(3,2),m4=4∴P3(EQ\f(3,2),EQ\f(3,4)),P4(4,2)∵P1、P2、P3、P4均在第一象限∴符合条件的点P的坐标为(1,2)或(6,12)或(EQ\f(3,2),EQ\f(3,4))或(4,2)25.(本题满分12分)问题提出(1)如图1,已知△ABC,试确定一点D,使得以A、B、C、D为顶点的四边形为平行四边形,请画出这个平行四边形.问题探究(2)如图2,在矩形ABCD中,AB=4,BC=10.若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离.问题解决(3)如图3,有一座塔A,按规划,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°.那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的□BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
2018陕西省中考数学真题及答案(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,计30分。每小题只有一个选项是符合题意的)1.(3分)﹣的倒数是()A. B. C. D.2.(3分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体 B.长方体 C.三棱柱 D.四棱锥3.(3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A. B. C.﹣2 D.25.(3分)下列计算正确的是()A.a2•a2=2a4 B.(﹣a2)3=﹣a6 C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A. B.2 C. D.37.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:3(填“>”、“<”或“=”).12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。解答应写出过程)15.(5分)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)016.(5分)化简:(﹣)÷.17.(5分)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)18.(5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.19.(7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表组别分数/分频数各组总分/分A60<x≤70382581B70<x≤80725543C80<x≤90605100D90<x≤100m2796依据以上统计信息解答下列问题:(1)求得m=,n=;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.20.(7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.24.(10分)已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.25.(12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 疫情防控背景下学生心理辅导策略研究
- 银行对公客户业务场景化解决方案研究
- 智能分析学生体能测试数据的科技应用探讨
- 绿色校园的创建与学校环境教育的关系研究
- 语文教材分析与教师专业素养培育
- 2025年福建信息职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年漯河职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 绿色健康宠物饲料的发展及挑战
- 心理教育与健康生活课程设计策略与实践
- 2025年普通机箱项目可行性研究报告
- 商标法基础知识
- 2025年高考物理一轮复习之机械振动
- 医院医务人员医德考评标准
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- 癫痫病人的护理(课件)
- 2024年WPS计算机二级考试题库350题(含答案)
- 2024年6月浙江省高考地理试卷真题(含答案逐题解析)
- 灌肠操作评分标准
- 企业年金基金管理机构基本服务和收费标准规范规范行业自律公约
- 小学二年级部编人教版上册语文期末整理复习题
- DB5106∕T 16-2021 机插水稻育秧基质制备技术规程
评论
0/150
提交评论