2025年冀教版高一数学上册阶段测试试卷_第1页
2025年冀教版高一数学上册阶段测试试卷_第2页
2025年冀教版高一数学上册阶段测试试卷_第3页
2025年冀教版高一数学上册阶段测试试卷_第4页
2025年冀教版高一数学上册阶段测试试卷_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年冀教版高一数学上册阶段测试试卷658考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、如果角θ的终边经过点(-);则tanθ=()

A.

B.-

C.

D.

2、已知则的值是。(A)1(B)(C)(D)03、【题文】设则对任意实数a,b,a+b0是的()A.充要条件B.充要不必要条件C.必要不充分条件D.既不充分也不必要条件4、【题文】已知直线与给出如下结论:

①不论为何值时,与都互相垂直;

②当变化时,与分别经过定点A(0,1)和B(-1,0);

③不论为何值时,与都关于直线对称;

④当变化时,与的交点轨迹是以AB为直径的圆(除去原点).

其中正确的结论有().A.①③B.①②④C.①③④D.①②③④5、【题文】设全集集合则集合为()A.{1,2}B.{1}C.{2}D.{-1,1}6、【题文】集合则A∩B是()A.(1,-1)B.C.D.{1,-1}7、【题文】一个几何体的三视图如图;该几何体的表面积为。

A.280B.292C.360D.3728、程序框图如图所示,该程序运行后输出的S的值是()A.﹣3B.﹣C.D.2评卷人得分二、填空题(共5题,共10分)9、已知则log3645=____(用a,b表示).10、【题文】已知某几何体的三视图如图所示,则该几何体的体积为____。11、【题文】为R上的连续函数,当时,定义则我们定义_____________。12、函数y=3sin(2x+)的最小正周期为____.13、已知函数f(x)=若f(a)+f(1)=0,则a的值为______.评卷人得分三、证明题(共8题,共16分)14、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.15、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.16、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.17、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.18、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.19、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.20、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.21、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.评卷人得分四、解答题(共4题,共32分)22、已知等比数列{an}中,a1+a2+a3=7,a1a2a3=8,求an.

23、

空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,若求异面直线AD;BC所成角的大小.

24、(满分14分;共3小题,任选两小题作答,每小题7分,若全做则按前两小题计分)

(1)计算求值:

(2)函数y=ln(ax2+2x+1)的值域是一切实数;求a的取值范围;

(3)若<试确定实数a的取值范围.

25、(12分)如图,四棱锥P—ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上。(1)求证:平面AEC⊥PDB;(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成角的大小。评卷人得分五、综合题(共4题,共20分)26、在直角坐标系xoy中,一次函数的图象与x轴、y轴分别交于点B和点A,点C的坐标是(0,1),点D在y轴上且满足∠BCD=∠ABD.求D点的坐标.27、已知抛物线y=ax2-2ax+c-1的顶点在直线y=-上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α2+β2=10.

(1)求这个抛物线的解析式;

(2)设这个抛物线与y轴的交点为P;H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;

(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.28、如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A;B两点.

(1)求A;B,C三点的坐标;

(2)求经过A,B,C三点的抛物线的解析式.29、已知抛物线y=x2+4ax+3a2(a>0)

(1)求证:抛物线的顶点必在x轴的下方;

(2)设抛物线与x轴交于A、B两点(点A在点B的右边),过A、B两点的圆M与y轴相切,且点M的纵坐标为;求抛物线的解析式;

(3)在(2)的条件下,若抛物线的顶点为P,抛物线与y轴交于点C,求△CPA的面积.参考答案一、选择题(共8题,共16分)1、D【分析】

∵角θ的终边经过点(-),且点(-)是角θ的终边和单位圆的交点;

∴x=-y=

∴tanθ==-

故选D.

【解析】【答案】由于角θ的终边经过点(-),可得x=-y=由此求得tanθ=的值.

2、B【分析】【解析】

因为则=-1,选B【解析】【答案】B3、A【分析】【解析】

试题分析:由是奇函数.∴f(x)为增函数.∵a+b≥0,⇒a≥-b,∴f(a)≥f(-b),∴f(a)≥-f(b);

∴f(a)+f(b)≥0,反之也成立,∴“a+b≥0”是“f(a)+f(b)≥0”的充要条件;选A.

考点:1.利用函数的导数判断函数的单调性;2.充要条件【解析】【答案】A4、B【分析】【解析】

试题分析:与互相垂直的条件是;a×1+1×(-a)=0,所以,①正确;

由直线系方程,知,②当变化时,与分别经过定点A(0,1)和B(-1,0);正确;

当时,由两方程消去a;

并整理得,即表示以AB为直径的圆(除去原点),结合选项可知选B。

考点:直线系方程;圆的方程。

点评:中档题,本题综合性较强,较全面考查了两直线的位置关系,直线系的概念以及圆的方程。【解析】【答案】B5、C【分析】【解析】【解析】【答案】C6、C【分析】【解析】略【解析】【答案】C7、C【分析】【解析】略【解析】【答案】C8、D【分析】【解答】解:程序在运行过程中各变量的值如下表示:。是否继续循环Si第一圈是﹣32第二圈是3第三圈是4第四圈是25第五圈是﹣36依此类推,S的值呈周期性变化:2,﹣3,﹣2,﹣3,,周期为4

由于2012=4×503。是否继续循环Si第2012圈是22012第2013圈否故最终的输出结果为:2;

故选D.

【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.二、填空题(共5题,共10分)9、略

【分析】

∵log189=a,b=log185;

∴a+b=log189+log185=log18(9×5)=log1845,log1836=log18(2×18)=1+log182==2-log189=2-a;

∴log3645==.

故答案为.

【解析】【答案】利用对数的换底公式即可求出.

10、略

【分析】【解析】

试题分析:由三视图可知该几何体是一个圆柱去掉了一部分,故所求几何体的体积为

考点:本题考查了三视图的运用。

点评:由三视图联想到原几何体的图形是解决此类问题的关键【解析】【答案】11、略

【分析】【解析】考察函数的连续性。【解析】【答案】12、π【分析】【解答】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π

故答案为:π

【分析】将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.13、略

【分析】解:由分段函数的表达式可知f(1)=2;

若f(a)+f(1)=0;则f(a)=-f(1)=-2;

当a>0时,f(a)=2a=-2;此时方程无解;

当a≤0时;由f(a)=a+1=-2,解得a=-3;

故答案为:-3

根据分段函数的表达式进行求解即可得到结论.

本题主要考查函数值的计算,根据分段函数的表达式是解决本题的关键.【解析】-3三、证明题(共8题,共16分)14、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.15、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.16、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.17、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.18、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.19、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.20、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.21、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.四、解答题(共4题,共32分)22、略

【分析】

设{an}的公比为q,由题意知

解得或

∴an=2n-1或an=23-n.

【解析】【答案】利用等比数列的基本量a1,q,根据条件求出a1和q.最后根据等比数列的通项公式求得an.

23、略

【分析】

设G为AC的中点;∵E;F分别是AB、CD中点。

∴EG∥BC且

FG∥AD且

∴∠EGF为异面直线AD;BC所成的角(或其补角)

∴△EGF中,

∴∠EGF=120°;

即异面直线AD;BC所成的角为60°

【解析】【答案】设G为AC的中点,由已知中AD=BC=2,E、F分别是AB、CD的中点,若根据三角形中位线定理,我们易求出∠EGF为异面直线AD;BC所成的角(或其补角),解三角形EGF即可得到答案.

24、略

【分析】

(1)

=5×(5×2)lg2=5×10lg2=5×2=10

(2)当a=0时;y=ln(2x+1),满足题意。

当a≠0时,要使函数y=ln(ax2+2x+1)的值域是一切实数;需满足。

解得0<a≤1

∴a的取值范围[0;1]

(3)设函数则f(x)是奇函数,由幂函数的性质作出函数图象如图:

∴或或

解得

【解析】【答案】(1)根据指数函数和对数函数的运算法则化简即可。

(2)分类讨论真数的二次项系数是否为零;使得真数能取到所有的正数。

(3)根据幂函数的图象与性质;列出两个底数的大小关系,解不等式组即可。

25、略

【分析】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可.(1)证明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC(2)【解析】

设AC与BD交于O点,连接EO则易得∠AEO为AE与面PDB所成的角∵E、O为中点∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE与面PDB所成角的大小为45°【解析】【答案】(1)证明:见解析;(2)AE与面PDB所成角的大小为45°。五、综合题(共4题,共20分)26、略

【分析】【分析】先根据一次函数的解析式求出点A及点B的坐标,利用勾股定理解出线段BC、AB的坐标,分一下三种情况进行讨论,(1)若D点在C点上方时,(2)若D点在AC之间时,(3)若D点在A点下方时,每一种情况下求出点D的坐标即可.【解析】【解答】解:∵A;B是直线与y轴、x轴的交点;

令y=0,解得;

∴;

令x=0;解得y=-3;

∴A(0;-3);

由勾股定理得,;

(1)若D点在C点上方时;则∠BCD为钝角;

∵∠BCD=∠ABD;又∠CDB=∠ADB;

∴△BCD∽△ABD;

∴;

设D(0;y),则y>1;

∵;

∴;

∴8y2-22y+5=0;

解得或(舍去);

∴点D的坐标为(0,);

(2)若D点在AC之间时;则∠BCD为锐角;

∵∠ABD=∠BCD;又∠BAD=∠CAB;

∴△ABD∽△ACB,∴;

设D(0,y),则-3<y<1,又;

∴;

整理得8y2-18y-5=0;

解得或(舍去);

∴D点坐标为(0,-);

(3)若D点在A点下方时;有∠BAC=∠ABD+∠ADB>∠ABD;

又显然∠BAC<∠BCD;

∴D点在A点下方是不可能的.

综上所述,D点的坐标为(0,)或(0,-).27、略

【分析】【分析】(1)把顶点A的坐标代入直线的解析式得出c=a+;根据根与系数的关系求出c=1-3a,得出方程组,求出方程组的解即可;

(2)求出P、B、C的坐标,BC=4,根据sin∠BCP==,和HK∥BP,得出=,求出PK=t;过H作HG⊥PC于G,根据三角形的面积公式即可求出答案;

(3)根据S=-(t-2)2+2求出S取最大值,作KK′⊥HC于K′,求出KK′和OK′,得到点K的坐标,设所求直线的解析式为y=kx+b,代入得到方程组求出即可.【解析】【解答】解:(1)由y=ax2-2ax+c-1=a(x-1)2+c-1-a得抛物线的顶点为

A(1;c-1-a).

∵点A在直线y=-x+8上;

∴c-1-a=-×1+8;

即c=a+;①

又抛物线与x轴相交于B(α;0);C(β,0)两点;

∴α、β是方程ax2-2ax+c-1=0的两个根.

∴α+β=2,αβ=;

又α2+β2=10,即(α+β)2-2αβ=10;

∴4-2×=10;

即c=1-3a②;

由①②解得:a=-;c=5;

∴y=-x2+x+4;

此时;抛物线与x轴确有两个交点;

答:这个抛物线解析式为:y=-x2+x+4.

(2)由抛物线y=-x2+x+4;

令x=0;得y=4,故P点坐标为(0,4);

令y=0,解得x1=-1,x2=3;

∵α<β;∴B(-1,0),C(3,0);

∴BC=4,又由OC=3,OP=4,得PC=5,sin∠BCP==;

∵BH=t;∴HC=4-t.

∵HK∥BP,=,=;

∴PK=t

如图,过H作HG⊥PC于G,则HG=HC,

sin∠BCP=(4-t)•=(4-t);

∴S=×t×(4-t)=t2+2t;

∵点H在线段BC上且HK∥BP;∴0<t<4.

∴所求的函数式为:S=-t2+2t(0<t<4);

答:将S表示成t的函数为S=-t2+2t(0<t<4).

(3)由S=-t2+2t=-(t-2)2+2(0<t<4);知:

当t=2(满足0<t<4)时;S取最大值,其值为2;

此时;点H的坐标为(1,0);

∵HK∥PB;且H为BC的中点;

∴K为PC的中点;

作KK′⊥HC于K′;

则KK′=PO=2,OK′=CO=;

∴点K的坐标为(;2);

设所求直线的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论