版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版高一数学下册阶段测试试卷501考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共8题,共16分)1、方程2x=2-x的根所在区间是().A.(-1,0)B.(2,3)C.(1,2)D.(0,1)2、若x的方程x2+x+4-m=0的两个根α;β满足α+1<0<β+1,则m范围为()
A.
B.(4;+∞)
C.(3;+∞)
D.R
3、下列图象中不能作为函数图象的是()4、【题文】已知直线的倾斜角为45°,在轴上的截距为2,则此直线方程为()A.B.C.D.5、【题文】正方体中,直线与()A.异面且垂直B.异面但不垂直C.相交且垂直D.相交但不垂直6、【题文】设是所在平面外一点,若则在平面内的射影是的()A.内心B.外心C.重心D.垂心7、
A.相交B.异面C.平行D.相交或异面8、下列说法中正确的是()A.平行于同一直线的两个平面平行B.垂直于同一直线的两个平面平行C.平行于同一平面的两条直线平行D.垂直于同一平面的两个平面平行评卷人得分二、填空题(共8题,共16分)9、在△ABC中,角A,B,C所对的边分别是a,b,c,a+b=9,则c=____.10、13、如图在△ABC中,AD⊥BC,ED=2AE,过E作FG∥BC,且将△AFG沿FG折起,使∠EA'D=90°,则二面角A'-FG-B的大小为____.
11、已知函数定义:使为整数的数叫作企盼数,则在区间内这样的企盼数共有个.12、如图是一个空间几何体的三视图,则这个几何体的体积是.13、【题文】点(2,1)到直线3x-4y+2=0的距离是____14、设{an}是等比数列,若a1+a2+a3=7,a2+a3+a4=14,则a4+a5+a6=____.15、等比数列前8项的和为____.16、执行如图所示的程序框图,如果输入的N是5,那么输出的S是______.
评卷人得分三、计算题(共6题,共12分)17、已知x1,x2为方程x2+4x+2=0的两实根,则x13+14x2+55=____.18、(2012•乐平市校级自主招生)如图,AB∥EF∥CD,已知AC+BD=240,BC=100,EC+ED=192,求CF.19、分解因式:
(1)2x3-8x=____
(2)x3-5x2+6x=____
(3)4x4y2-5x2y2-9y2=____
(4)3x2-10xy+3y2=____.20、在梯形ABCD中,AB∥CD,AC、BD相交于点O,若AC=5,BD=12,中位线长为,△AOB的面积为S1,△COD的面积为S2,则=____.21、计算:sin50°(1+tan10°).22、计算:+log23﹣log2.评卷人得分四、综合题(共3题,共15分)23、已知:甲;乙两车分别从相距300(km)的M、N两地同时出发相向而行;其中甲到达N地后立即返回,图1、图2分别是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)试求线段AB所对应的函数关系式;并写出自变量的取值范围;
(2)当它们行驶到与各自出发地距离相等时,用了(h);求乙车的速度;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.24、已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧);且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系;并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小?最小面积是多少?25、如图,由矩形ABCD的顶点D引一条直线分别交BC及AB的延长线于F,G,连接AF并延长交△BGF的外接圆于H;连接GH,BH.
(1)求证:△DFA∽△HBG;
(2)过A点引圆的切线AE,E为切点,AE=3;CF:FB=1:2,求AB的长;
(3)在(2)的条件下,又知AD=6,求tan∠HBC的值.参考答案一、选择题(共8题,共16分)1、D【分析】试题分析:由题可知,设因此,根所在区间是(0,1)。考点:二分法求函数零点【解析】【答案】D2、B【分析】
记f(x)=x2+x+4-m
∵两个根α;β满足α+1<0<β+1;
∴两个根α;β满足α<-1<β
则函数f(x)的图象与x轴的两个交点分别在-1的两侧。
注意到f(x)开口向上;
故f(-1)<0
∴4-m<0
∴m>4
故选B
【解析】【答案】令函数f(x)=x2+x+4-m;可以看出函数图象开口向上,x轴的两个交点分别在-1的两侧,推断出f(-1)<0,求得a的范围.
3、B【分析】【解析】试题分析:因为选项A中,能符合任意的一个x,对应唯一的y,因此是函数的图像;选项B中,由于作一条垂直于x轴的直线,一个x能对应两个y,与定义相互矛盾,故不能作为函数图象。选项C,D中,依次做一条直线垂直于x轴,都有唯一的一个y相对应,因此符合定义,成立。故选B。考点:本试题主要考查了函数的概念与图形的运用。【解析】【答案】B4、A【分析】【解析】
试题分析:∵直线的倾斜角为45°,∴直线的斜率为tan45°=1,又直线在轴上的截距为2,∴直线方程为故选A
考点:本题考查了直线的斜截式。
点评:当题目中有截距和斜率时,应选用直线的斜截式形式解决【解析】【答案】A5、B【分析】【解析】
试题分析:画出正方体,可以很容易的看出直线与异面但不垂直.
考点:本小题主要考查空间中直线的位置关系;考查学生的空间想象能力.
点评:不同在任何一个平面内的两条直线是异面直线,注意到此处是“任何一个”.【解析】【答案】B6、B【分析】【解析】
试题分析:设点在平面上的射影为则平面因为所以根据勾股定理可得所以到三角形的三个顶点的距离相等,故点为的外心;所以选B.
考点:空间中的垂直关系.【解析】【答案】B7、D【分析】【解析】略【解析】【答案】D8、B【分析】【解答】解:平行于同一直线的两个平面相交或平行;故A不正确;
由平面平行的判定定理知垂直于同一直线的两个平面平行;故B正确;
平行于同一平面的两条直线平行;相交或异面;故C不正确;
垂直于同一平面的两个平面平行或相交;故D不正确.
故选B.
【分析】平行于同一直线的两个平面相交或平行;由平面平行的判定定理知B正确;平行于同一平面的两条直线平行、相交或异面;垂直于同一平面的两个平面平行或相交.二、填空题(共8题,共16分)9、略
【分析】
∵在△ABC中,角A,B,C所对的边分别是a,b,c,
∴0<C<
∵sin2C+cos2C=1
∴sinC=cosC=
∵
∴absinC=
∴ab=20
∵cosC==
∴=
又∵a+b=9
解得c=6
故答案为6
【解析】【答案】根据再结合平方关系sin2C+cos2C=1可求出sinC,cosC,然后再根据面积公式和条件求出ab的值;追后再根据求出的cosC利用余弦定理即可求出C的值.
10、略
【分析】
AD⊥BC;FG∥BC,∴ED⊥FG,A′E⊥FG,∴∠A′ED即为二面角A'-FG-B的平面角,在直角三角形EA′D中,ED=2A′E,∴∠EDA′=30°,∴∠A′ED=60°
故答案为:60°.
【解析】【答案】由已知;可证出,∠A′ED即为二面角A'-FG-B的平面角,在直角三角形EA′D中求解即可.
11、略
【分析】∵函数f(n)=logn+1(n+2)(n∈N*),∴f(1)=log23f(2)=log34,,f(k)=logk+1(k+2),∴f(1)•f(2)f(k)log23•log34••logk+1(k+2)=log2(k+2),若f(1)•f(2)f(k)为整数,则k+2=2n(n∈Z),又∵k∈[1,10],故k∈{2,6}【解析】【答案】212、略
【分析】试题分析:由三视图可得几何体为如图所示三棱锥,其中AB,BC,CD两两互相垂直,BC=4,DB=3,AB=5,故体积为考点:三视图,椎体的体积.【解析】【答案】1013、略
【分析】【解析】
所以点(2,1)到直线3x-4y+2=0的距离是【解析】【答案】14、56【分析】【解答】解:∵{an}是等比数列,a1+a2+a3=7,a2+a3+a4=14;
∴(a1+a2+a3)q=14;即q=2;
则a4+a5+a6=(a1+a2+a3)q3=56;
故答案为:56.
【分析】已知等式利用等比数列的通项公式变形,求出公比q的值,原式变形后代入计算即可求出值.15、【分析】【解答】解:等比数列前8项的和:
S8==.
故答案为:.
【分析】利用等比数列的前n项和公式求解.16、略
【分析】解:如果输入的N是5;那么:
循环前S=1;k=1;
经过第一次循环得到S=-1;k=3;
经过第二次循环得到S=-9;k=5;
经过第三次循环得到S=-55;k=7;
S=-399;此时不满足k≤5,执行输出S=-399;
故答案为:-399.
通过程序框图;按照框图中的要求将几次的循环结果写出,得到输出的结果.
本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.【解析】-399三、计算题(共6题,共12分)17、略
【分析】【分析】由于x1,x2为方程x2+4x+2=0的两实根,由此得到x12+4x1+2=0,x1+x2=-4,x1•x2=2,而x13=x12•x1,然后代入所求代数式即可求解.【解析】【解答】解:∵x1,x2为方程x2+4x+2=0的两实根;
∴x12+4x1+2=0,x1+x2=-4,x1•x2=2;
∴x12=-4x1-2;
而x13=x12•x1;
∴x13+14x2+55
=x12•x1+14x2+55
=(-4x1-2)•x1+14x2+55
=-4x12-2x1+14x2+55
=-4(-4x1-2)-2x1+14x2+55
=14(x1+x2)+8+55
=14×(-4)+63
=7.
故答案为:7.18、略
【分析】【分析】此题根据平行线分线段成比例定理写出比例式,再根据等式的性质,进行相加,得到和已知条件有关的线段的和,再代入计算.【解析】【解答】解:∵AB∥EF∥CD;
∴①
②
①+②;得
③
由③中取适合已知条件的比例式;
得
将已知条件代入比例式中,得
∴CF=80.19、略
【分析】【分析】(1)原式提取2x;再利用平方差公式分解即可;
(2)原式提取x;再利用十字相乘法分解即可;
(3)原式提取公因式;再利用平方差公式分解即可;
(4)原式利用十字相乘法分解即可.【解析】【解答】解:(1)原式=2x(x2-4)=2x(x+2)(x-2);
(2)原式=x(x2-5x+6)=x(x-3)(x-2);
(3)原式=y2(4x4-5x2-9)=y2(4x2-9)(x2+1)=y2(2x+3)(2x-3)(x2+1);
(4)原式=(3x-y)(x-3y);
故答案为:(1)2x(x+2)(x-2);(2)x(x-3)(x-2);(3)y2(2x+3)(2x-3)(x2+1);(4)(3x-y)(x-3y)20、略
【分析】【分析】作BE∥AC,从而得到平行四边形ACEB,根据平行四边形的性质及中位线定理可求得DE的长,根据勾股定理的逆定理可得到△DBE为直角三角形,根据面积公式可求得梯形的高,因为△AOB和△COD的面积之和等于梯形的面积从而不难求解.【解析】【解答】解:作BE∥AC;
∵AB∥CE;∴CE=AB;
∵梯形中位线为6.5;
∴AB+CD=13;
∴DE=CE+CD=AB+CD=13;
∵BE=AC=5;BD=12,由勾股定理的逆定理;
得△BDE为直角三角形;即∠EBD=∠COD=90°;
设S△EBD=S
则S2:S=DO2:DB2
S1:S=OB2:BD2
∴=
∵S=12×5×=30
∴=.
故本题答案为:.21、解:sin50°(1+tan10°)
=sin50°(1+)
=
=
=
=
=1.【分析】【分析】首先,将正切化简为弦,然后,结合辅助角公式和诱导公式进行化简即可.22、解:原式=(3﹣log25)+log23﹣log2
=3+
=3﹣2
=1【分析】【分析】利用乘法公式与对数的运算性质即可得出.四、综合题(共3题,共15分)23、略
【分析】【分析】(1)首先设线段AB所表示的函数的解析式为y=kx+b,根据题意知道函数经过(3,300),(;0)两点,利用待定系数法即可确定函数的解析式和自变量的取值范围;
(2)首先可以判定x=在3<x≤中,然后把x=代入(1)的函数解析式y=-80x+540中可以求出甲所走的路程;同时也知道了乙的路程,最后利用速度公式即可求解;
(3)首先确定依有两次相遇,①当0≤x≤3时,100x+40x=300,②当3<x≤时,(540-80x)+40x=300,分别解这两个方程即可求解.【解析】【解答】解:(1)设线段AB所表示的函数的解析式为y=kx+b;
把(3,300),(,0)代入其中得;
解之得;
∴线段AB所表示的函数解析式为y=-80x+540;
自变量的取值范围为3<x≤;
(2)∵x=在3<x≤中;
∴把x=代入(1)的函数解析式y=-80x+540中;
得y甲=180;
∴乙车的速度为180÷=40km/h;
(3)依题意有两次相遇;
①当0≤x≤3时;100x+40x=300;
∴x=;
②当3<x≤时;(540-80x)+40x=300;
∴x=6;
∴当它们行驶了小时和6小时时两车相遇.24、略
【分析】【分析】(1)设二次函数的解析式是y=ax2;把A(-4,4)代入求出a代入一次函数求出k,即可得到答案;
(2)求出B;O的坐标;求出OA和O到直线y=-1的距离即可得出答案;
(3)作MN的垂直平分线,△FMN外接圆的圆心O在直线上,求出MN、DN,根据勾股定理求出O'F=O'N的圆心坐标的纵坐标Y,求出y取何值时r最小,即可求出答案.【解析】【解答】解:(1)设二次函数的解析式是y=ax2(a≠0);
把A(-4;4)代入得:4=16a;
a=;
∴y=x2;
把A(-4;4)代入y=kx+1得:4=-4k+1;
∴k=-;
∴y=-x+1;
答:一次函数与二次函数的解析式分别为y=-x+1,y=x2.
(2)答:以线段AB为直径的圆与直线l的位置关系是相切.
证明:得:,;
∴B(1,);
AB的中点O的坐标是(-,);
OA==;
O到直线y=-1的距离是+1==0B;
∴以线段AB为直径的圆与直线l的位置关系是相切.
(3)解:作MN的垂直平分线;△FMN外接圆的圆心O在直线上;
由于平移后的抛物线对称轴为x=2;对称轴交x轴于D;
F(0,1)平移后二次函数的解析式是y=(x-2)2-t,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感恩节创意方案(19篇)
- 土壤(第1课时)导学案 高中地理人教版(2019)必修一
- 快递使用规则培训
- 初级会计实务-初级会计《初级会计实务》模拟试卷294
- 初级会计经济法基础-2021年5.15上午初级会计职称考试《经济法基础》真题
- 220k变电所安全运行
- 建筑与市政工程质量安全第三方巡查执行方案
- 部编版一年级语文下册第15课《一分钟》精美课件
- 2025版物业安全巡查与报告制度合同范本3篇
- 二零二五版校园周边商业街保洁服务协议3篇
- 2024年安全教育培训试题附完整答案(夺冠系列)
- 神农架研学课程设计
- 文化资本与民族认同建构-洞察分析
- 2025新译林版英语七年级下单词默写表
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 《锡膏培训教材》课件
- 断绝父子关系协议书
- 福建省公路水运工程试验检测费用参考指标
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 工伤赔偿授权委托书范例
评论
0/150
提交评论