版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十一章不等式与不等式组11.1不等式人教版-数学-七年级下册11.1.2不等式的性质第1课时
不等式的性质学习目标1.掌握不等式的三个性质,并能熟练地应用不等式的性质进行不等式的变形.【重点】2.能利用不等式的性质解决简单的问题.【难点】
前面我们已经学习过等式的基本性质(1)等式的两边加或减同一个数(或式子),等式仍然成立.
(2)等式的两边乘或除以同一个数(除数不为0),等式仍然成立.猜想:不等式也具有同样的性质吗?如果a=b,那么a±c=b±c如果a=b,那么ac=bc或(c≠0).新课导入
对于某些简单的不等式,可以直接得出它们的解集,
例如:不等式x+4>10的解集是x>6,不等式2x<5的解集是x<3.但是对于比较复杂的不等式,例如,直接得出解集就比较困难.因此,还要讨论怎样解不等式.新知探究知识点不等式的性质
与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质.为此,我们先来看看不等式有什么性质.
我们知道,等式两边加或减同一个数(或式子),乘或除以同一个数(除数不为0),结果仍相等.
不等式是否也有类似的性质呢?新知探究探究1
用“<”或“>”填空,并观察不等号的方向是否改变,总结其中的规律:(1)5>3,
5+2
3+2,5+0
3+0,
5+(-2)
3+(-2)
;(2)-1<3-1+4
3+4,-1+0
3+0,-1+(-7)
3+(-7).><
<根据发现的规律填空:当不等式两边加或减同一个数(正数或负数)时,不等号的方向________.不变新知探究>><如果a>b,那么a+c>b+c,a-c>b-c.一般地,不等式有如下性质:
不等式的性质1
不等式两边加(或减)同一个数(或式子),不等号的方向不变.新知探究归纳总结探究2
用“<”或“>”填空,并观察不等号的方向是否改变,并总结其中的规律:(1)6>2,
6×5___2×5,6×(-5)___2×(-5);(2)-2<3,(-2)×4___3×4,(-2)×(-0.5)___3×(-0.5).根据发现的规律填空:当不等式两边乘同一个正数时,不等号的方向______;而乘同一个负数时,不等号的方向______.>><<不变改变新知探究
不等式的性质2
不等式两边乘(或除以)同一个正数,不等号的方向不变.
不等式的性质3
不等式两边乘(或除以)同一个负数,不等号的方向改变.如果a>b,c>0,那么ac
>bc,>如果a>b,c<0,那么ac
<bc,<新知探究归纳总结它们有什么区别呢?新知探究
例2
已知a>b,比较下列两个式子的大小,并说明依据.(1)a+3与b+3;(2)-2a与-2b.解:(1)因为a>b,所以a+3>b+3(不等式的性质1).
(2)因为a>b,所以-2a<-2b(不等式的性质3).
设a>b,用“<”“>”填空,并回答是根据不等式的哪一条基本性质.(1)a-7____b-7;根据是__________________(2)a÷6____b÷6;根据是__________________(3)0.1a____0.1b;根据是__________________
(4)-4a____-4b;根据是__________________(5)2a+3____2b+3;根据是__________________>>>><不等式的性质1不等式的性质2不等式的性质2不等式的性质3不等式的性质1,2新知探究针对练习不等式的基本性质不等式基本性质2不等式基本性质3→→如果
那么如果
那么应用性质对不等式简单变形不等式的基本性质1如果a>b,那么a+c>b+c,a-c>b-c→课堂小结1.已知
a<b,用“>”或“<”填空:(1)a+12
b+12;(2)b-
10
a-
10;<>(3)6a
6b;(4).<>课堂训练2.由m>n得km>kn成立的条件为()A.k>0B.k<0C.k≤0D.k≥0A课堂训练3.若x<y,且(a-b)x>(a-b)y,则a
b.<4.已知m<-2,利用不等式的性质写出下列各式的取值范围:(1)m+3;(2)
;(3)-3m;
(4)2m+6.解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁石油化工大学《建筑给水排水工程》2023-2024学年第一学期期末试卷
- 兰州博文科技学院《大众健身操》2023-2024学年第一学期期末试卷
- 吉林司法警官职业学院《焊接先进技术》2023-2024学年第一学期期末试卷
- 湖南大学《数字媒体设计与制作-U交互设计》2023-2024学年第一学期期末试卷
- 【物理】《物体的浮沉条件及应用》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 重庆海联职业技术学院《中学生物教学研究与实践》2023-2024学年第一学期期末试卷
- 郑州电子信息职业技术学院《材料分析测试技术(B)》2023-2024学年第一学期期末试卷
- 浙江科技学院《装饰图案设计》2023-2024学年第一学期期末试卷
- 中国青年政治学院《金融社会工作》2023-2024学年第一学期期末试卷
- 郑州轻工业大学《染整工艺实验(2)》2023-2024学年第一学期期末试卷
- 2024年大学英语四级真题CET及答案解析
- 网安民警个人工作总结
- 黄金买卖合同范本
- 米-伊林《十万个为什么》阅读练习+答案
- 碎屑岩油藏注水水质指标及分析方法
- 【S洲际酒店婚礼策划方案设计6800字(论文)】
- 医养康养园项目商业计划书
- 《穿越迷宫》课件
- 《C语言从入门到精通》培训教程课件
- 2023年中国半导体行业薪酬及股权激励白皮书
- 2024年Minitab全面培训教程
评论
0/150
提交评论