




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年苏科版数学七年级下册易错题真题汇编(提高版)第7章《平面图形的认识(二)》考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•偃师市校级一模)小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25° B.30° C.35° D.40°解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.2.(2分)(2022秋•崂山区期末)如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③ B.①③④ C.①④ D.①②④解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=∠ACD,∠DBE=∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=(∠ACD﹣∠ABC)=∠1,故①正确;∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠1)=90°+∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=∠ACB,∠ACE=ACD,∴∠OCE=(∠ACB+∠ACD)=×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.3.(2分)(2022春•东坡区期末)如图,△ABC中,CD平分∠ACB,点M在线段CD上,且MN⊥CD交BA的延长线于点N.若∠B=30°,∠CAN=96°,则∠N的度数为()A.22° B.27° C.30° D.37°解:如图所示,∠NAC是三角形ABC的一个外角,∴∠NAC=∠B+∠ACB,即∠ACB=∠NAC﹣∠B;∵CD平分∠ACB,∴∠ACD=∠DCB=∠ACB,∵∠B=30°,∠CAN=96°,∴∠ACD=∠ACB=(96°﹣30°)=33°,∵MN⊥CD,∴在直角三角形OMC中,∠COM=90°﹣33°=57°,∵∠NOA与∠COM互为对顶角,∴∠NOA=∠COM=57°,∴∠N=180°﹣57°﹣96°=27°.故选:B.4.(2分)(2022春•宾阳县期末)如图,已知GH∥BC,∠1=∠2,GF⊥AB,给出下列结论:①∠B=∠AGH;②HE⊥AB;③∠D=∠F;④HE平分∠AHG.其中正确的有()A.1个 B.2个 C.3个 D.4个解:∵GH∥BC,∴∠1=∠HGF,∠B=∠AGH,故①正确;∵∠1=∠2,∴∠2=∠HGF,∴DE∥GF,∴∠D=∠DMF,根据已知条件不能推出∠F也等于∠DMF,故③错误;∵DE∥GF,∴∠F=∠AHE,∵∠D=∠1=∠2,∴∠2不一定等于∠AHE,故④错误;∵GF⊥AB,GF∥HE,∴HE⊥AB,故②正确;即正确的个数是2,故选:B.5.(2分)(2022•黔东南州一模)如图,AB∥CD,若∠E=55°,则∠B+∠D等于()A.125° B.180° C.250° D.305°解:过点E作EF∥AB,如图:∵EF∥AB,AB∥CD,∴AB∥CD∥EF,∴∠B+∠BEF=180°,∠D+∠FED=180°,∴∠B+∠BEF+∠D+∠FED=360°,即∠B+∠BED+∠D=360°.而∠BED=55°,∴∠B+∠D=360°﹣55°=305°.故选:D.6.(2分)(2022春•绍兴期末)如图,已知直线AB∥CD,直线EF分别交直线AB、CD于E、F,EM平分∠AEF交CD于M,G是射线MD上一动点(不与M、F重合).EH平分∠FEG交CD于点H,设∠MEH=α,∠EGF=β,现有下列四个式子:①2α=β;②2α﹣β=180°;③α﹣β=30°;④2α+β=180°.其中正确的是()A.①② B.①④ C.①③④ D.②③④解:当点G在点F右侧时,如图示:∵EH平分∠FEG,EM平分∠AEF,∴∠MEF=∠AEF,∠FEH=∠FEG,∵AB∥CD,∴∠BEG=∠EGF=β.∴∠MEH=α=∠MEF+∠FEH=(∠AEF+∠FEG)=(180°﹣∠BEG)=(180°﹣β),∴2α+β=180°,故④是正确的;当点G在M和F之间时,如图:∵EH平分∠FEG,EM平分∠AEF,∴∠MEF=∠AEF,∠FEH=∠FEG,∵AB∥CD,∴∠BEG=∠EGF=β.∴∠MEH=α=∠MEF﹣∠FEH=∠AEF﹣∠FEG=(180°﹣∠BEF)﹣(180°﹣β﹣∠BEF)=β,∴2α=β,故①是正确的.故选:B.7.(2分)(2022春•工业园区校级期中)如图,△ABC的两条中线AD、BE交于点F,若四边形CDFE的面积为17,则△ABC的面积是()A.54 B.51 C.42 D.41解:如图所示,连接CF,∵△ABC的两条中线AD、BE交于点F,∴S△BCE=S△ABD,∴S四边形CDFE=S△ABF=17,∵BE是△ABC的中线,FE是△ACF的中线,∴S△BCE=S△ABE,S△FCE=S△FAE,∴S△BCF=S△BAF=17,同理可得,S△ACF=S△BAF=17,∴S△BCF=S△BAF=S△ACF=17,∴S△ABC=3S△BAF=3×17=51,故选:B.8.(2分)(2022春•越秀区校级期末)如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EF∥HC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①AD∥BC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°﹣∠FGA﹣∠DGH=16°,∵∠FGA=∠DGH,∴90°﹣2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=∠1,∠MGK=∠2,∴∠AGK=∠1+∠2,∵GK平分∠AGC,∴∠CGK=∠AGK=∠1+∠2,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+∠1=∠2+∠1+∠2,∴∠2=18.5°,∴∠MGK=18.5°,故④错误,故选:B.9.(2分)(2022秋•广州期中)如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4 B.5 C.6 D.7解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,即BC的长可能值有4个,故选:A.10.(2分)(2019秋•猇亭区校级期中)如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10° B.15° C.30° D.40°解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,∴∠PAB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠PAB+∠ABP)=15°.故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•礼泉县期末)如图,AB∥CD,BF、DF分别平分∠ABE和∠CDE,BF∥DE,∠F与∠ABE互补,则∠F的度数为36°.解:延长FB交CD于点G,如图:∵BF,DF分别平分∠ABE和∠CDE,∴∠1=∠2,∠FBA=∠FBE,∵AB∥CD,∴∠FBA=∠3,∵BF∥DE,∠F与∠ABE互补,∴∠3=∠EDC=2∠2,∠F=∠1,∠F+∠ABE=180°,设∠F=x°,则∠1=∠2=x°,∠3=2x°,∠ABE=4x°,∴x+4x=180,解得,x=36,即∠F的度数为36°.故答案为:36.12.(2分)(2022春•西乡塘区校级期中)如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,若按此变化规律将△OAB进行n次变换,得到△OAnBn,则=2n+1.解:由题意得:△OAB的面积=OB•2=×2×2=2,△OA1B1的面积=OB1•2=×4×2=4=22,△OA2B2的面积=OB2•2=×8×2=8=23,…∴△OAnBn的面积=2n+1,故答案为:2n+1.13.(2分)(2022秋•香坊区校级期中)如图,已知AB∥CD,∠PAQ=2∠BAQ,∠PCD=3∠QCD,∠P=75°,则∠AQC=95°.解:过点P作PE∥AB,过点Q作QF∥AB,如图:∵AB∥CD,QF∥AB,∴AB∥QF∥CD,∴∠BAQ=∠AQF,∠QCD=∠CQF,∴∠BAQ+∠QCD=∠AQF+∠CQF,即∠BAQ+∠QCD=∠AQC,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠APE+∠PAB=180°,∠CPE+∠PCD=180°,∴∠APE+∠CPE+∠PAB+∠PCD=360°,即∠APC+∠PAB+∠PCD=360°,∵∠APC=75°,∴∠PAB+∠PCD=285°,∵∠PAQ=2∠BAQ,∴∠PAB=3∠BAQ,∵∠PCD=3∠QCD,∴3∠BAQ+3∠QCD=285°,∴∠BAQ+∠QCD=95°,∴∠AQC=95°.故答案为:95°.14.(2分)(2022春•孝南区期末)如图1,∠DEF=24°,将长方形纸片ABCD沿直线EF折叠成图2,再沿直线GF折叠成图3,则图3中∠CFE=108°.解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=24°.由翻折的性质可知:图2中,∠EFC=180°﹣∠BFE=156°,∠BFC=∠EFC﹣∠BFE=132°,图3中,∠CFE=∠BFC﹣∠BFE=108°.故答案为:108°.15.(2分)(2022春•铁西区期末)有一张三角形纸片ABC,已知∠B=30°,∠C=50°,点D在边AB上,请在边BC上找一点E,将纸片沿直线DE折叠,点B落在点F处,若EF与三角形纸片ABC的边AC平行,则∠BED的度数为25°或115°.解:①当点F在AB的上方时,如图:∵AC∥EF,∠C=50°,∴∠BEF=∠C=50°,∴∠BED=∠FED=∠BEF=×50°=25°;②当点F在BC的下方时,如图:∵AC∥EF,∠C=50°,∴∠CEF=∠C=50°,∵∠F=∠B=30°,∴∠BGD=50°+30°=80°,∴∠BDG=180°﹣80°﹣30°=70°,∴∠BDE=∠BDG=×70°=35°;∴∠BED=180°﹣∠B﹣∠BDE=180°﹣30°﹣35°=115°综上所述,∠BDE的度数为25°或115°.故答案为:25°或115°.16.(2分)(2022春•武汉期末)如图,AB∥CD,∠ABG的平分线BE和∠GCD的平分线CF的反向延长线交于点E,且3∠E﹣5∠G=172°,则∠G=28度.解:如图,分别过E、G作AB的平行线EM和GN,∵AB∥CD,∴AB∥EM∥CD∥GN,∵BE是∠ABG的平分线,CF是∠GCD的平分线,∴∠BEM=∠ABE=∠ABG,∠MEF=∠DCF=∠GCD,∠BGN=∠ABG,∠GCD+∠CGN=180°,∴∠BEC=∠BGM+∠MEF=(∠ABG+∠GCD),∠BGC=∠BGN﹣∠CGN=∠ABG﹣(180°﹣∠GCD)=∠ABG+∠GCD﹣180°,∴∠BGC=2∠BEC﹣180°,∵3∠BEC﹣5∠BGC=172°,∴3∠BEC=5∠BGC+172°,∴∠BGC=(5∠BGC+172°)﹣180°,∴3∠BGC=10∠BGC+344°﹣540°,∴∠BGC=28°.故答案为:28.17.(2分)(2022春•新都区期末)如图,△ABC中,∠ACB=45°,点E在BC上,点D在AC上,AE⊥BD,若AE=BD,CE:BE=4:5,S△AEB=65,则S△DCE=20.解:作DM⊥BC于M,AN⊥BC于N,如图所示:则∠BMD=∠CMD=∠ANE=90°,∵∠ACB=45°,∴△CDM、△CAN是等腰直角三角形,∴CM=DM,CN=AN,∵AE⊥BD,∴∠AEN+∠EAN=∠AEN+∠DBM=90°,∴∠EAN=∠DBM,∴△AEN≌△BDM(AAS),∴AN=BM,EN=DM,∴CN=BM,∴CM=BN,∴CM=DM=BN=EN,设BE=5a,则CE=4a,BC=BE+CE=9a,CM=DM=BN=EN=BE=a,AN=BM=BC﹣CM=a,∴S△AEB=BE×AN=•5a•a=65,∴a2=4,∴S△DCE=CE×DM=•4a•a=5a2=20;故答案为:20.18.(2分)(2022春•南京期中)如图,在两条笔直且平行的景观道AB,CD上放置P,Q两盏激光灯.其中光线PB按顺时针方向以每秒5°的速度旋转至边PA便立即回转,并不断往返旋转;光线QC按顺时针方向以每秒3°的速度旋转至边QD就停止旋转,此时光线PB也停止旋转.若光线QC先转4秒,光线PB才开始转动,当PB1∥QC1时,光线PB旋转的时间为6或43.5秒.解:当PB1∥QC1,则∠PB1Q=∠CQC1,如下图:∵AB∥CD,∴∠PB1Q=∠BPB1.∴∠CQC1=∠BPB1.设光线PB旋转时间为t秒,∴4×3+3t=5t.∴t=6.当PB1∥QC1,则∠CQC1=∠PB1C,如下图:∵AB∥CD,∴∠PB1Q=∠BPB1.∴∠BPB1=∠CQC1.设光线PB旋转时间为t秒,此时光线PB由PA处返回,∴∠APB1=5t°﹣180°.∴∠BPB1=180°﹣∠APB1=180°﹣(5t°﹣180°)=360°﹣5t°.∴360﹣5t=4×3+3t.∴t=43.5.综上,光线PB旋转的时间为6或43.5秒.故答案为:6或43.5.19.(2分)(2018秋•香坊区期末)如图,在三角形ABC中,AD⊥BC,垂足为点D,直线EF过点C,且90°﹣∠FCB=∠BAD,点G为线段AB上一点,连接CG,∠BCG与∠BCE的角平分线CM、CN分别交AD于点M、N,若∠BGC=70°,则∠MCN=35°.解:∵AD⊥BC,∴Rt△ABD中,90°﹣∠B=∠BAD,又∵90°﹣∠FCB=∠BAD,∴∠FCB=∠B,∴EF∥AB,∴∠ECG=∠BGC=70°,∵∠BCG与∠BCE的角平分线CM、CN分别交AD于点M、N,∴∠BCN=∠BCE,∠BCM=∠BCG,∴∠MCN=∠BCN﹣∠BCM=(∠BCE﹣∠BCG)=∠ECG=×70°=35°,故答案为:35.20.(2分)(2022春•鼓楼区校级期末)如图,在△ABC中,点E是AB边上的点,且AE:EB=2:3,点D是BC边上的点,且BD:DC=1:2,AD与CE相交于点F,若四边形BDFE的面积是16,则△ABC的面积为60.解:连接FB,如图所示:设S△BDF=a,S△BEF=b,∵,∴S△AEF=b,∵BD:DC=1:2,∴S△CDF=2a,∴S△ABD=S△ACD=(16+b),S△ACE=(16+2a),∵S△ACF=S△ACD﹣S△CDF=S△ACE﹣S△AEF,∴32+b﹣2a=(16+2a)﹣b,∴10a﹣6b=64,∵a+b=16,,解得,∴S△ABC=S△ACD+S△AEF+S四边形BDFE=(32+b)+b+16=40+20=60.故答案为:60.三.解答题(共7小题,满分60分)21.(6分)(2022春•常州期中)问题情境:如图①,直线AB∥CD,点E,F分别在直线AB,CD上.猜想:(1)若∠1=130°,∠2=150°,试猜想∠P=80°;探究:(2)在图①中探究∠1,∠2,∠P之间的数量关系,并证明你的结论;拓展:(3)将图①变为图②,若∠1+∠2=325°,∠EPG=75°,求∠PGF的度数.解:(1)如图①,过点P作PM∥AB,∵AB∥CD,∴AB∥CD∥PM,∴∠1+∠EPM=180°,∠2+∠MPF=180°,∵∠1=130°,∠2=150°,∴∠EPM=50°,∠MPF=30°,∴∠EPF=∠EPM+∠MPF=50°+30°=80°,故答案为:80;(2)∠EPF=360°﹣∠1﹣∠2,理由如下:如图①,过点P作PM∥AB,∵AB∥CD,∴AB∥CD∥PM,∴∠1+∠EPM=180°,∠2+∠MPF=180°,∴∠EPM=180°﹣∠1,∠MPF=180°﹣∠2,∴∠EPF=∠EPM+∠MPF=(180°﹣∠1)+(180°﹣∠2)=360°﹣∠1﹣∠2;(3)如图②,过点P作PM∥AB,∵AB∥CD,∴AB∥CD∥PM,由(2)知,∠PGF=360°﹣∠MPG﹣∠2,∵PM∥AB,∴∠1+∠EPM=180°,∴∠EPM=180°﹣∠1,∵∠EPG=∠EPM+∠MPG=75°,∴∠MPG=75°﹣∠EPM=75°﹣(180°﹣∠1)=∠1﹣105°,∴∠PGF=360°﹣∠MPG﹣∠2=360°﹣(∠1﹣105°)﹣∠2=465°﹣(∠1+∠2),∵∠1+∠2=325°,∴∠PGF=465°﹣325°=140°.22.(6分)(2022春•顺德区校级期中)如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.(1)如图1,试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问∠AEP,∠EPF,∠PFC还可能满足怎样的数量关系?请画图并直接写出结论.(3)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=150°.②猜想∠EPF与∠EQF的数量关系,并说明理由.解:(1)∠EPF=∠AEP+∠CFP,理由如下:如图1,当点P在EF的左侧时,过点P作PH∥AB,则PH∥CD,∴∠AEP=∠EPH,∠FPH=∠CFP,∴∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,(2)∠AEP+∠EPF+∠PFC=360°,理由如下:如图,当点P在EF的右侧时,过点P作PM∥AB,则PM∥CD,∴∠AEP+∠EPM=180°,∠PFC+∠MPF=180°,∴∠AEP+∠EPM+∠PFC+∠MPF=360°,即∠AEP+∠EPF+∠PFC=360°;(3)①∵AB∥CD,∠EPF=60°,∴∠PEB+∠PFD=360°﹣60°=300°,∵EQ,FQ分别平分∠PEB和∠PFD,∴∠BEQ=∠PEB,∠QFD=∠PFD,∴∠EQF=∠BEQ+∠QFD=(∠PEB+∠PFD)=×300°=150°;故答案为:150°;②∠EPF+2∠EQF=360°.理由如下:如图3,QE,QF分别平分∠PEB和∠PFD,设∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠EPF=180°﹣2α+180°﹣2β=360°﹣2(α+β),∠EQF=α+β,即∠EPF+2∠EQF=360°.23.(6分)(2022春•云州区期中)如图,AD∥BC,射线OM上有一动点P,且∠ADP=∠a,∠BCP=∠β.(1)当点P在A,B两点之间运动时,∠CPD与∠a、∠β之间有何数量关系?请说明理由.(2)当点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),∠CPD与∠α、∠β之间有何数量关系?请说明理由.解:(1)∠CPD=∠α+∠β,理由如下:如图1,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)分两种情况:①当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图2,过P作PE∥AD交ON于点E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;②当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.24.(10分)(2022春•河东区期中)如图1,AB∥CD,∠PAB=135°,∠PCD=125°,求∠APC度数.小明的思路是:过P作PE∥AB,如图2,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为100°;请说明理由;(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,则∠CPD、∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.解:(1)∵PE∥AB,∠PAB=135°,∴∠APE=180°﹣∠PAB=45°,∵AB∥CD,∴PE∥CD,∴∠CPE=180°﹣∠PCD=55°,∴∠APC=∠APE+∠CPE=100°,故答案为:100°;(2)∠DPC=∠α+∠β,理由:过点P作PF∥AD,∴∠DPF=∠ADP=∠α,∵AD∥CB,∴PF∥CB,∴∠CPF=∠PCB=∠β,∵∠DPC=∠DPF+∠CPF,∴∠DPC=∠α+∠β;(3)分两种情况:当点P在射线AM上运动时,∠DPC=∠β﹣∠α,理由:如图:过点P作PG∥AD,∴∠GPD=∠ADP=∠α,∵AD∥BC,∴PG∥BC,∴∠GPC=∠BCP=∠β,∵∠DPC=∠GPC﹣∠GPD,∴∠DPC=∠β﹣∠α;当点P在OB上运动时,∠DPC=∠α﹣∠β,理由:如图:过点P作PH∥AD,∴∠HPD=∠ADP=∠α,∵AD∥BC,∴PG∥BC,∴∠HPC=∠BCP=∠β,∵∠DPC=∠HPD﹣∠HPC,∴∠DPC=∠α﹣∠β;综上所述:当点P在射线AM上运动时,∠DPC=∠β﹣∠α;当点P在OB上运动时,∠DPC=∠α﹣∠β.25.(10分)(2022春•汉川市期中)已知AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图1,已知∠1=∠2,∠3=∠4.①若∠4=38°,求∠1的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图2,EG平分∠MEF,EH平分∠MEB,直接写出∠GEH与∠EFC的数量关系.解:(1)①∵AB∥CD,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4=38°,∴∠1的度数为38°;②EM∥FN,理由:∵∠1=∠2=∠3=∠4,∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,∴∠MEF=∠EFN,∴EM∥FN;(2)∠EFC=2∠GEH,理由:∵AB∥CD,∴∠BEF=∠EFC,∵EG平分∠MEF,∴∠MEG=∠GEF=∠GEH+∠FEH,∴∠GEH=∠MEG﹣∠FEH,∵EH平分∠MEB,∴∠MEH=∠BEH,∴∠MEG+∠GEH=∠BEF+∠FEH,∴∠MEG﹣∠FEH+∠GEH=∠BEF,∴2∠GEH=∠BEF,∴∠EFC=2∠GEH.26.(10分)(2022秋•沈阳期末)如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是20°,当DP⊥OE时,x=70;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.解:(1)①∵∠AOB=40°,OC平分∠AOB,∴∠BOE=20°,∵DE∥OB,∴∠DEO=∠BOE=20°;∵∠DOE=∠DEO=20°,∴DO=DE,∠ODE=140°,当DP⊥OE时,∠ODP=∠ODE=70°,即x=70,故答案为:20,70;②∵∠DEO=20°,∠EDF=∠EFD,∴∠EDF=80°,又∵∠ODE=140°,∴∠ODP=140°﹣80°=60°,∴x=60;(2)存在这样的x的值,使得∠EFD=4∠EDF.分两种情况:①如图2,若DP在DE左侧,∵DE⊥OA,∴∠EDF=90°﹣x°,∵∠AOC=20°,∴∠EFD=20°+x°,当∠EFD=4∠EDF时,20°+x°=4(90°﹣x°),解得x=68;②如图3,若DP在DE右侧,∵∠EDF=x°﹣90°,∠EFD=180°﹣20°﹣x°=160°﹣x°,∴当∠EFD=4∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年虚拟现实设计师考试试题及答案
- 2025年心理健康教育与咨询专业知识考试试题及答案
- 2025年刑法学考试试题及答案分析
- 2025年物理学专业研究生入学考试题及答案
- 2025年数据分析师考试模拟题及答案
- 2025年社区服务管理师考试试卷及答案
- 2025年软件工程专业考试题及答案
- 2025年会计电算化考试真题及答案
- 2025年健康管理与健康教育课程考试试题及答案
- 2025年古典文学专业研究生入学考试试卷及答案
- 人教版英语七年级下册跨学科融合计划
- 砖厂安全生产管理制度
- 医院设备采购预算编制要点
- 2025年芜湖宜居投资(集团)有限公司招聘笔试参考题库含答案解析
- 汽车尾气治理技术
- 新教师科研能力提升措施
- 《现代农业生物技术育种方法》课件
- 企业慈善捐赠指引
- 部编版四年级道德与法治上册第8课《网络新世界》
- 房地产开发项目风险评估报告
- 2025年广东中考物理学科模拟试卷(广东专属)
评论
0/150
提交评论