




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年粤教版高一数学上册阶段测试试卷634考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、函数与y=在第一象限内的交点坐标为()
A.(-1;1)
B.(1;-1)
C.(0;0)
D.(1;1)
2、下列对应法则是从集合A到集合B的映射的是()A.A=R,B={x|x>0},B.C.A=N,B=D.A=R,B=3、若集合A={0,2,3,5},则集合A的真子集共有()A.7个B.8个C.15个D.16个4、【题文】
设非空集合满足:当时,有现则的范围是(▲)A.B.C.D.5、如图,D
是鈻�ABC
边AB
的中点,则向量CD鈫�
用BA鈫�BC鈫�
表示为(
)
A.12BA鈫�鈭�BC鈫�
B.鈭�12BA鈫�鈭�BC鈫�
C.12BA鈫�+BC鈫�
D.BC鈫�鈭�12BA鈫�
评卷人得分二、填空题(共5题,共10分)6、把函数的图象上的所有点向右平移个单位,再把所有点的横坐标缩短到原来的一半,而把所有点的纵坐标伸长到原来的4倍,所得图象的表达式是____.7、函数的最大值是____.8、【题文】已知直线的方程为则与垂直的直线的倾斜角为____9、已知映射A→B的对应法则f:x→3x+1,则B中的元素7在A中的与之对应的元素是______.10、已知x;y的取值如表所示:
。x0134y2.24.34.86.7若y与x线性相关,且y=2x+a,则a=______.评卷人得分三、证明题(共8题,共16分)11、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.12、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.13、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.14、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.15、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.16、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.17、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.18、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共1题,共9分)19、作出下列函数图象:y=评卷人得分五、解答题(共1题,共3分)20、【题文】已知集合,,且,求实数的取值范围。评卷人得分六、综合题(共1题,共5分)21、若反比例函数y=与一次函数y=kx+b的图象都经过一点A(a,2),另有一点B(2,0)在一次函数y=kx+b的图象上.
(1)写出点A的坐标;
(2)求一次函数y=kx+b的解析式;
(3)过点A作x轴的平行线,过点O作AB的平行线,两线交于点P,求点P的坐标.参考答案一、选择题(共5题,共10分)1、D【分析】
研究函数与y=知;其是幂函数,在第一象限内都过点(1,1);
故答案是:D.
或者说;由于题中考察的是在第一象限内的交点,由此可以排除A,B,C;
故选D.
【解析】【答案】本题要用幂函数的图象与图象性质的对应来确定正确的选项,故解题时要先考查函数与y=的图象性质;再观察四个选项中点的特殊性,选出正确答案.
2、D【分析】试题分析:对于A,B选项,当x=0时,在B中没有元素与它对应,故它们不是映射;对于C选项,A的元素1在B中没有元素与之相对应的象,故它们不是映射;对于D选项,A的每一个元素在B中都有唯一的元素与之对应,故它是映射;故选D.考点:映射的概念.【解析】【答案】D3、C【分析】试题分析:若一个集合中含有个元素,其子集个数为真子集个数为非空子集个数为非空真子集个数为本题则真子集共有考点:集合的真子集的概念.【解析】【答案】C4、D【分析】【解析】略【解析】【答案】D5、A【分析】解:隆脽D
是鈻�ABC
边AB
的中点,隆脿CD鈫�=CB鈫�+BD鈫�=鈭�BC鈫�+12BA鈫�
故选:A
直接利用向量线性运算即可.
本题考查了向量的线性运算,属于基础题.【解析】A
二、填空题(共5题,共10分)6、略
【分析】
由题意函数的图象上各点向右平移个单位长度,得到y=sin(2x--)=sin(2x-);再把横坐标缩短为原来的一半;
得到再把纵坐标伸长为原来的4倍,得到
故答案为:
【解析】【答案】根据函数y=Asin(ωx+φ)的图象变换规则对函数的解析式进行变换即可;由题设条件知,本题的变换涉及到了平移变换,周期变换,振幅变换.
7、略
【分析】
当x≤0时;y=2x+3≤3;
当0<x≤1时;3<y=x+3≤4;
当x>1时;y=-x+5<4;
综上;得函数的最大值为:4.
故答案为:4.
【解析】【答案】先求出各段函数值范围;然后取其最大值即可.
8、略
【分析】【解析】解:因为直线的方程为则与垂直的直线的斜率为-则倾斜角为【解析】【答案】9、略
【分析】解:由题意知;3x+1=7;
∴x=2;
∴B中的元素7在A中的与之对应的元素是2;
故答案为2.
根据映射的定义;像3x+1的值是7,求出x值即为所求.
本题考查映射的概念、像与原像的定义.按对应法则f:x→3x+1,x是原像,3x+1是像,本题属于已知像,求原像.【解析】210、略
【分析】解:由数表知,=×(0+1+3+4)=2;
=×(2.2+4.3+4.8+6.7)=4.5;
代入回归直线方程y=2x+a中;
得4.5=2×2+a;
解得a=0.5.
故答案为:0.5.
由数表求得代入回归直线方程即可求得答案.
本题考查了线性回归方程恒过样本中心点的应用问题,是基础题目.【解析】0.5三、证明题(共8题,共16分)11、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.12、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.13、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.14、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.15、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.16、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.17、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=18、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民事调解协议员协议书
- 老师工作协议书
- 自行保存协议书
- 股东套餐协议书
- 美式和平协议书
- 自愿捐卵协议书
- 管辖范围协议书
- 绿化清理协议书
- 股票抵债协议书
- 美国隐私协议书
- 航空与航天学习通超星期末考试答案章节答案2024年
- 工行个人房屋贷款协议模板
- 担任学生干部证明
- 《国家电网有限公司电力建设安全工作规程第4部分:分布式光伏》知识培训
- 2024年《13464电脑动画》自考复习题库(含答案)
- 【核心素养目标】9.3 一元一次不等式组 教案七年级数学下册(人教版)
- 保证断绝关系的保证书
- 选拔卷-:2024年小升初数学模拟卷三(北师大版)A3版
- 快递云仓合同范本
- 2024年高考语文作文第一轮复习:掌握常用的写作结构
- DZ∕T 0339-2020 矿床工业指标论证技术要求(正式版)
评论
0/150
提交评论