中考数学二轮复习几何专项知识精讲+基础提优训练专题31 四边形综合练习(基础)(原卷版)_第1页
中考数学二轮复习几何专项知识精讲+基础提优训练专题31 四边形综合练习(基础)(原卷版)_第2页
中考数学二轮复习几何专项知识精讲+基础提优训练专题31 四边形综合练习(基础)(原卷版)_第3页
中考数学二轮复习几何专项知识精讲+基础提优训练专题31 四边形综合练习(基础)(原卷版)_第4页
中考数学二轮复习几何专项知识精讲+基础提优训练专题31 四边形综合练习(基础)(原卷版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题31四边形综合练习(基础)一.选择题1.下列说法中,正确的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形 C.四条边相等的四边形是菱形 D.矩形的对角线一定互相垂直2.如图,在矩形ABCD中,点E是CD的中点,AE平分∠BED,PE⊥AE交BC于点P,连接PA,以下四个结论:①BE平分∠AEC;②PA⊥BE;③AD=32AB;④PB=2A.4个 B.3个 C.2个 D.1个3.如图,在矩形ABCD中,P是BC上一点,E是AB上一点,PD平分∠APC,PE⊥PD,连接DE交AP于F,在以下判断中,不正确的是()A.当P为BC中点,△APD是等边三角形 B.当△ADE∽△BPE时,P为BC中点 C.当AE=2BE时,AP⊥DE D.当△APD是等边三角形时,BE+CD=DE4.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①② B.①④ C.①②④ D.①③④5.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论正确个数的有()①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=3A.1 B.2 C.3 D.46.如图,已知矩形ABCD中,点E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连接EF,若AB=6,BC=46,则下列说法中正确的个数有()①△DEF≌△GEF;②GF:GB=3:2;③S△BEF=106;④S△BCF:S△DFE=1:1.A.1个 B.2个 C.3个 D.4个7.如图,过▱ABCD的对角线AC的中点O任作两条互相垂直的直线,分别交AB,BC,CD,DA于E,F,G,H四点,连接EF,FG,GH,HE,有下面四个结论,①OH=OF;②∠HGE=∠FGE;③S四边形DHOG=S四边形BFOE;④△AHO≌△AEO,其中正确的是()A.①③ B.①②③ C.②④ D.②③④8.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H①AF=12FH;②BO=BF;③CA=CH;④BE=3A.②③ B.③④ C.①②④ D.②③④9.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=5①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S正方形ABCD=4+6⑤S△APD+S△APB=1+6其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤10.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+42,其中正确的结论个数为()A.2 B.3 C.4 D.511.如图,在平行四边形ABCD中,AB=3,BC=4,∠ABC=60°,过对角线BD的中点O的直线GH分别交AD、BC于点E、F,交BA的延长线于点G,交DC的延长线于点H,连接GD、BH,则下列结论:①AG=CH,②DE+CF=5,③S四边形ABFE=33,④四边形BGDH为平行四边形.其中正确的有()A.②③④ B.①③④ C.①②④ D.①②③12.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴,y轴上,反比例函数y=kx(k>0,x>0)的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN,下列结论:①△OCN≌△OAM;②MN=CN+AM;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=4,则点C的坐标为(0,2A.1 B.2 C.3 D.4二.填空题13.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则下列结论:①AC⊥BD;②AC⊥CD;③tan∠DAC=2;④四边形ABCD的面积为31;⑤BD=241.正确的是14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的有.(填序号)15.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=2;⑤S四边形CDEF=52S△ABF16.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是2−1③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)17.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:①BE=CD;②∠DGF=135°;③∠ABG+∠ADG=180°;④若ABAD=23,则3S△BDG=13其中正确的结论是.(填写所有正确结论的序号)18.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连接CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为5−1.其中正确的说法是19.如图,正方形ABCD中,连接BD.点E在边BC上,且CE=2BE.连接AE交BD于F;连接DE,取BD的中点O;取DE的中点G,连接OG.下列结论:①BF=OF;②OG⊥CD;③AB=5OG;④sin∠AFD=2其中正确结论的是.20.如图,已知正方形ABCD,M,N分别是BC,CD上的点,∠MAN=45°,连接BD分别交AM,AN于E,F,下面结论错误的是.①△CMN的周长等于正方形ABCD的边长的两倍;②点A到MN的距离等于正方形ABCD的边长;③EF2=BE2+DF2;④△EMO与△FNO均为等腰直角三角形;⑤S△AMN=2S△AEF⑥S正方形ABCD:S△AMN=2AB:MN.三.解答题21.已知,点P在正方形ABCD的边BC上,过点P作垂直于AP的直线l,过点C作平行于BD的直线m,直线l与直线n相交于点Q,连接AQ交BD于点E,连接PE(1)依题意补全图形;(2)求证:PA=PQ;(3)探究线段AB,BP,PE之间的数量关系,并给予证明.22.阅读以下材料,并按要求完成相应的任务.如图(1),已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.我们称四边形0EMF为四边形ABCD的“伴随四边形”.(1)若四边形ABCD是菱形,则其“伴随四边形”是,若四边形ABCD矩形,则其“伴随四边形”是:(在横线上填特殊平行四边形的名称)(2)如图(2),若四边形ABCD是矩形,M是BC延长线上的一个动点,其他条件不变,点F落在AC的延长线上,请写出线段OB、ME,MF之间的数量关系,并说明理由.23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2m﹣6,0),B(4,0),C(﹣1,2),点A、B分别在原点两侧,且A、B两点间的距离等于6个单位长度.(1)求m的值;(2)在x轴上是否存在点M,使△COM面积=13△ABC面积,若存在,请求出点(3)如图2,把线段AB向上平移2个单位得到线段EF,连接AE,BF,EF交y轴于点G,过点C作CD⊥AB于点D,将长方形GOBF和长方形AECD分别以每秒1个单位长度和每秒2个单位长度的速度向右平移,同时,动点M从点A出发,以每秒1个单位长度的速度沿折线AECDA运动,当长方形GOBF与长方形AECD重叠面积为1时,求此时点M的坐标.24.已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,请直接写出:BC,CD,CF三条线段之间的数量关系为.(2)如图2,当点D在线段BC的延长线上时,其他条件不变.(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请你写出正确的结论,并给出证明.(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变.请直接写出:BC,CD,CF三条线段之间的数量关系.25.以四边形ABCD的边AB,AD为边分别向外侧作等边三角形ABF和等边三角形ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时,如图①,EB和FD的数量关系是;(2)当四边形ABCD为矩形时,如图②,EB和FD具有怎样的数量关系?请加以证明;(3)如图③,四边形ABCD由正方形到矩形再到一般平行四边形的变化过程中,EB和FD具有怎样的数量关系?请直接写出结论,无需证明.26.如图1,在▱ABCD中.AB=6.AC与BD交于点O,点E,F分别是线段AC,CD上的动点(点E,F不与A,C,D重合).AE=CF.设∠ACD=a,将线段AD绕点A按逆时针方向旋转a得到AP,连接PE,BE,BF.(1)求证:△APE≌△CBF:(2)如图2,若∠BOA=90°,∠ACD=40°,且点B、E、P在一条直线上,求BE+BF的值;(3)当OB=OC,∠ACD=60°时,BE+BF长的最小值是.27.如图1,在四边形ABCD中,AD∥BC,∠B=90°,BC=m,AD=n,动点P从点B出发依次沿线段BA,AD,DC向点C移动,设移动路程为z,△BPC的面积S随着z的变化而变化的图象如图2所示,m,n是常数.(1)写出线段AB和AD的长度.(2)求m的值.(3)当△APD是等腰三角形时,求s的值.28.如图,E是正方形ABCD中CD边上的一点,AE交对角线BD于点P,过点P作AE的垂线交BC于点G,连AG交对角线BD于点Q.(1)求证:AP=PG.(2)线段BQ、PQ、PD有何数量关系?证明你的结论;(3)若AB=4,过点G作GF⊥BD于F,直接写出GF+PD=.29.如图1,在平面直角坐标系中,正方形ABCO的边AB交y轴于D点.(1)若C点坐标为(3,1),求B点坐标;(2)E为BC上一点,且∠ODE=∠DOC,求∠DOE的值;(3)如图2,若M为OB的中点,过C点作CN⊥x轴,连接MN,探索NO,NM,NC三条线段之间的数量关系,并证明.30.在一个边长为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论