




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年上外版高一数学下册阶段测试试卷328考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、设则()A.B.C.D.2、【题文】已知则是()A.B.C.D.R3、【题文】定义在R上的函数f(x)满足f(x)=则f(2012)的值为()A.-1B.0C.1D.24、【题文】函数的单调减区间为()A.()B.(0,4)和C.(4)和D.(0,)5、四面体的一条棱长为c,其余棱长均为3,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为()A.πB.πC.πD.15π6、已知角θ的终边经过点P(3,4),则下面正确的是()A.sinθ=B.cosθ=C.cotθ=D.secθ=7、若圆O1方程为圆O2方程为则方程表示的轨迹是()A.经过两点O1O2的直线B.线段O1O2的中垂线C.两圆公共弦所在的直线D.一条直线且该直线上的点到两圆的切线长相等8、已知0<a<tanα=则sinβ=()A.B.C.D.-评卷人得分二、填空题(共6题,共12分)9、方程ln(3•=0的解为____.10、已知扇形中心角为弧度,半径为6cm,则扇形的弧长为____cm.11、已知则函数的最大值是________。12、在数列中,为数列的前项和,且则.13、【题文】函数在上为增函数,则的取值范围是____。14、在△ABC中,已知D是BC上的点,且CD=2BD.设==则=______.(用a,b表示)评卷人得分三、证明题(共7题,共14分)15、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.16、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.17、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.18、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.19、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.20、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.21、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、作图题(共4题,共28分)22、作出下列函数图象:y=23、作出函数y=的图象.24、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.
25、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)
评卷人得分五、计算题(共3题,共27分)26、解方程
(1)3x2-32x-48=0
(2)4x2+x-3=0
(3)(3x+1)2-4=0
(4)9(x-2)2=4(x+1)2.27、若f(x)=,则方程f(4x)=x的根是____.28、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且A∩B={x|0<x≤2},A∪B={x|x>﹣2},求a、b的值.评卷人得分六、综合题(共1题,共5分)29、已知抛物线y=x2+4ax+3a2(a>0)
(1)求证:抛物线的顶点必在x轴的下方;
(2)设抛物线与x轴交于A、B两点(点A在点B的右边),过A、B两点的圆M与y轴相切,且点M的纵坐标为;求抛物线的解析式;
(3)在(2)的条件下,若抛物线的顶点为P,抛物线与y轴交于点C,求△CPA的面积.参考答案一、选择题(共8题,共16分)1、D【分析】【解析】
因为利用正弦线和余弦线和正切线比较大小可知选b【解析】【答案】D2、B【分析】【解析】【解析】【答案】B3、A【分析】【解析】依题意可得,
故选A【解析】【答案】A4、C【分析】【解析】当时,单调递减,所以是的单调递减区间;当时,也单调递减,所以也是的单调递减区间。综上可得,选C【解析】【答案】C5、D【分析】【解答】底面积不变,高最大时体积最大,所以,面BCD与面ABD垂直时体积最大,由于四面体的一条棱长为c,其余棱长均为3,所以球心在两个正三角形的重心的垂线的交点,半径R=经过这个四面体所有顶点的球的表面积为:S==15π;
故选D.
【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积.6、C【分析】【解答】解:由题意,x=3,y=4,r=5,∴sinθ=cosθ=cotθ=secθ=
故选:C.
【分析】利用三角函数的定义,即可得出结论.7、D【分析】【分析】因为表示表示点向圆所引的切线长,表示表示点向圆所引的切线长;
则表示点到两圆的切线长相等。
【解答】方程表示直线。
所以选D8、D【分析】解:∵0<a<tanα=
∴cosα==sinα==cosβ=
∴由cosαcosβ+sinαsinβ=-可得:+sinβ=-
∴整理可得:25sin2β+24sinβ=0;
∴解得:sinβ=-或0(舍去).
故选:D.
由已知利用同角三角函数基本关系式可求cosα=sinα=cosβ=代入两角差的余弦函数公式化简可求sinβ的值.
本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.【解析】【答案】D二、填空题(共6题,共12分)9、略
【分析】
由ln(3•=0,得:3•2x-2=1;
所以,3•2x=3,2x=1;解得x=0.
故答案为x=0.
【解析】【答案】题目给出的是对数方程,根据“1的对数式0”得3•2x-2=1;整理后即可解得x的值.
10、略
【分析】
∵圆弧所对的圆心角为α弧度,半径为r
直接套用公式l=α•r
可求弧长为α•r=9;
故答案为:9
【解析】【答案】本题考查的知识点是弧长公式,由已知中圆弧所对的圆心角为α弧度,半径为r;直接代入公式即可求解.
11、略
【分析】【解析】试题分析:根据题意,由于则函数当x=-1时取得等号,故可知函数的最大值为-1.考点:基本不等式【解析】【答案】-112、略
【分析】【解析】
因为综上可得。【解析】【答案】13、略
【分析】【解析】略【解析】【答案】14、略
【分析】解:∵D是BC上的点;且CD=2BD;
∴
∵
∴
整理,得
结合题意==可得=
故答案为:
根据D是BC上的点,且CD=2BD,得到结合向量减法的三角形法则,得到化简整理可得代入已知条件即得本题的答案.
本题给出三角形ABC一边BC的三等分点,要求用向量线性表示向量着重考查了向量加法、减法的意义和平面向量的基本定理等知识点,属于基础题.【解析】三、证明题(共7题,共14分)15、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.16、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.17、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.18、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.19、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.20、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.21、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、作图题(共4题,共28分)22、【解答】幂函数y={#mathml#}x32
{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;
【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.23、【解答】图象如图所示。
【分析】【分析】描点画图即可24、解:程序框图如下:
【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.25、
解:几何体的三视图为:
【分析】【分析】利用三视图的作法,画出三视图即可.五、计算题(共3题,共27分)26、略
【分析】【分析】(1)方程左边的多项式利用十字相乘法分解因式;然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;
(2)方程左边的多项式利用十字相乘法分解因式;然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;
(3)将常数项移到右边;开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;
(4)利用两数的平方相等,两数相等或互为相反数转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解析】【解答】解:(1)3x2-32x-48=0;
分解因式得:(x-12)(3x+4)=0;
可得x-12=0或3x+4=0;
解得:x1=12,x2=-;
(2)4x2+x-3=0;
分解因式得:(4x-3)(x+1)=0;
可得4x-3=0=或x+1=0;
解得:x1=,x2=-1;
(3)(3x+1)2-4=0;
变形得:(3x+1)2=4;
开方得:3x+1=2或3x+1=-2;
解得:x1=,x2=-1;
(4)9(x-2)2=4(x+1)2;
开方得:3(x-2)=2(x+1)或3(x-2)=-2(x+1);
解得:x1=8,x2=.27、略
【分析】【分析】由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影视剧道具租赁与影视场景搭建综合服务合同
- 2025年中国搬运系统行业市场前景预测及投资价值评估分析报告
- 文化新闻稿件供应与文化交流合作协议
- 网络安全应急响应与安全设备采购合同
- 电商平台数据同步补充协议
- 网店运营税费代征代缴服务合同
- 观光车维保合同范本
- 白名单授权协议书
- 淘宝店铺销售数据分析与运营决策支持合同
- 各工种承包协议书
- 2024年6月高等学校英语应用能力考试B级真题2
- 2024年重庆市中考英语试卷真题B卷(含标准答案及解析)+听力音频
- 2024年越南电信 服务领域ICT投资趋势行业现状及前景分析2024-2030
- 厦门2024年福建厦门市儿童医院(复旦大学附属儿科医院厦门医院)招聘笔试历年典型考题及考点附答案解析
- 2023年湖南省普通高等学校对口招生考试机电类专业综合知识试题附答题卡
- 医院用工合同医院用工合同书(2024版)
- 管培生培养方案
- 口腔正畸学之矫治器及其制作技术常用器械课件
- 2024届江苏省淮安市数学高一下期末考试试题含解析
- JTG-H30-2015公路养护安全作业规程
- 危险化学品考试试题(含答案)
评论
0/150
提交评论