版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章立体几何初步8.6空间直线、平面的垂直8.6.3平面与平面垂直课后篇巩固提升必备知识基础练1.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C的大小为()A.90° B.60° C.45° D.30°答案A解析∵PA⊥平面ABC,BA,CA⊂平面ABC,∴BA⊥PA,CA⊥PA,因此∠BAC即为二面角B-PA-C的平面角.又∠BAC=90°,故选A.2.已知PA⊥矩形ABCD所在的平面(如图),图中互相垂直的平面有()A.1对 B.2对 C.3对 D.5对答案D解析∵DA⊥AB,DA⊥PA,AB∩PA=A,∴DA⊥平面PAB,同样BC⊥平面PAB,又易知AB⊥平面PAD,∴DC⊥平面PAD.∴平面PAD⊥平面ABCD,平面PAD⊥平面PAB,平面PBC⊥平面PAB,平面PAB⊥平面ABCD,平面PDC⊥平面PAD,共5对.3.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是()A.若m⊥β,α⊥β,则m∥αB.若m⊂α,n⊂β,m⊥n,则n⊥αC.若α⊥β,m⊥α,n∥β,则m⊥nD.若n⊥α,n⊥β,m⊥β,则m⊥α答案D解析当m⊂α时,m⊥β,α⊥β也可以成立,所以A选项错误;若α∩β=n,显然n⊂α,这时m⊂α,n⊂β,m⊥n也可以成立,所以B选项错误;当m∥n时,显然α⊥β,m⊥α,n∥β成立,所以C选项错误;因为n⊥β,m⊥β,所以m∥n.又因为n⊥α,所以m⊥α,所以D选项正确.故选D.4.如图所示,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,CD=.
答案2解析取AB的中点E,连接DE,CE.因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,且DE⊥AB,所以DE⊥平面ABC,故DE⊥CE.由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+5.如图,在空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90°,且AB=AD,则AD与平面BCD所成的角是.
答案45°解析过A作AO⊥BD于点O,∵平面ABD⊥平面BCD,∴AO⊥平面BCD,则∠ADO即为AD与平面BCD所成的角.∵∠BAD=90°,AB=AD,∴∠ADO=45°.6.在四面体ABCD中,AB=BC=CD=AD,∠BAD=∠BCD=90°,二面角A-BD-C为直二面角,E是CD的中点,则∠AED的大小为.
答案90°解析取BD中点O,连接AO,CO,由AB=BC=CD=AD,∴AO⊥BD,CO⊥BD,∴∠AOC为二面角A-BD-C的平面角.∴∠AOC=90°.又∠BAD=∠BCD=90°,∴△BAD与△BCD均为直角三角形.∴OC=OD,∴△AOD≌△AOC,∴AD=AC,∴△ACD为等边三角形.∵E为CD中点,∴AE⊥CD,∴∠AED=90°.7.三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求点B到平面MOC的距离.(1)证明∵O,M分别为AB,VA的中点,∴OM∥VB.又VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC.(2)证明∵AC=BC,O为AB的中点,∴OC⊥AB.又平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,∴OC⊥平面VAB,又OC⊂平面MOC,∴平面MOC⊥平面VAB.(3)解连接MB,VO,过M作MD⊥AB,垂足为D,图略,设h'为点B到平面MOC的距离,h为点M到平面BOC的距离.∵VM-BOC=VB-MOC,∴13S△BOC×h=13S△MOC×∵平面VAB⊥平面ABC,VO⊥AB,∴VO⊥平面ABC.又△VAB为等边三角形,AC⊥BC且AC=BC=2,O为AB中点,∴VO=3.又MD⊥AB,M为VA中点,∴MD=12VO=h=3∵S△BOC=12×1×1=12,S△MOC=12×1×1∴h'=32,即点B到平面MOC的距离为38.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)求证:平面PBE⊥平面PAB;(2)求二面角A-BE-P的大小.(1)证明如图所示,连接BD,由底面ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又因为AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又因为BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又因为AB⊥BE,所以∠PBA是二面角A-BE-P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,∠PBA=60°,故二面角A-BE-P的大小是关键能力提升练9.如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点答案D解析∵平面PAC⊥平面PBC,AC⊥PC,平面PAC∩平面PBC=PC,AC⊂平面PAC,∴AC⊥平面PBC.又BC⊂平面PBC,∴AC⊥BC.∴∠ACB=90°.∴动点C的轨迹是以AB为直径的圆,除去A和B两点.10.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则过点C1作C1H⊥平面ABC,垂足为H,则H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC的内部答案A解析因为BC1⊥AC,AB⊥AC,BC1∩AB=B,所以AC⊥平面ABC1.因为AC⊂平面ABC,所以平面ABC⊥平面ABC1.又因为平面ABC∩平面ABC1=AB,所以过点C1再作C1H⊥平面ABC,则H∈AB,即H在直线AB上.11.(多选题)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面PAC答案ABC解析如图,对于A,取AD的中点M,连接PM,BM,∵侧面PAD为正三角形,∴PM⊥AD,又底面ABCD是菱形,∠DAB=60°,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,PM,BM⊂平面PMB,∴AD⊥平面PMB,故A正确;对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确;对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=3在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确对于D,因为BD与PA不垂直,所以BD与平面PAC不垂直,故D错误.12.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
答案DM⊥PC(或:BM⊥PC,答案不唯一)解析连接AC,则AC⊥BD.∵PA⊥底面ABCD,BD⊂平面ABCD,∴PA⊥BD.∵PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.13.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,CD=.
答案2解析取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC.可知DE⊥CE.由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+14.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)解取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.15.如图,在三棱锥P-ABC中,PB⊥平面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠PAB=45°,D,E,F分别为AC,AB,BC的中点.(1)求证:EF⊥PD;(2)求直线PF与平面PBD所成的角的正弦值;(3)求二面角E-PF-B的平面角的正切值.(1)证明连接BD,在△ABC中,∠B=90°.∵AB=BC,点D为AC的中点,∴BD⊥AC.又∵PB⊥平面ABC,AC⊂平面ABC,∴AC⊥PB.∵BD∩PB=B,∴AC⊥平面PBD.∵E,F分别为AB,BC的中点,∴EF∥AC,∴EF⊥平面PBD,∵PD⊂平面PBD,∴EF⊥PD.(2)解连接BD交EF于点O,由(1)知EF⊥平面PBD,∴∠FPO为直线PF与平面PBD所成的角,且PO⊂平面PBD,∴EF⊥PO.∵PB⊥平面ABC,BC,AB⊂平面ABC,∴PB⊥AB,PB⊥BC.∵∠PAB=45°,∴PB=AB=2.∵OF=14AC=22,∴PF=在Rt△FPO中,sin∠FPO=OFPF∴直线PF与平面PBD所成的角的正弦值为1010(3)解过点B作BM⊥PF于点M,连接EM.∵AB⊥PB,AB⊥BC,PB∩BC=B,∴AB⊥平面PBC,∴BE⊥BM,BE⊥平面PBC.∵PF⊂平面PBC,∴PF⊥BE.又PF⊥BM,BE∩BM=B,∴PF⊥平面BME,∵EM⊂平面BME,∴PF⊥EM,∴∠BME为二面角E-PF-B的平面角.在Rt△PBF中,BM=BF·∴tan∠BME=BEBM∴二面角E-PF-B的平面角的正切值为52学科素养创新练16.如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2,四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1,F为侧棱PC上的任意一点.(1)求证:平面AFD⊥平面PAB;(2)是否存在点F,使得直线AF与平面PCD垂直?若存在,写出证明过程并求出线段PF的长;若不存在,请说明理由.(1)证明∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,且PA⊥AC,PA⊂平面PAC,∴PA⊥平面ABCD.又AD⊂平面ABCD,∴PA⊥AD.又AB⊥AD,PA∩AB=A,∴AD⊥平面P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024起重机安装与安全操作人员培训及考核合同3篇
- 二零二五年度股权转让与员工持股计划综合协议3篇
- 给朋友的明信片寄语 写给朋友的明信片内容
- 感恩学生演讲稿模板集锦十篇
- 幼儿园教师开展阅读活动
- 二零二五年度文化旅游项目劳务分包承揽合同
- 2024年钢琴租赁协议范本版A版
- 幼儿园地震预防与自救
- 亲手DIY深海面膜让肌肤无暇出色
- 文艺复古中国风隶书纯设计PT模板
- 2025年MEMS传感器行业深度分析报告
- 2024年度员工试用期劳动合同模板(含保密条款)3篇
- DB23-T 3840-2024非煤矿山隐蔽致灾因素普查治理工作指南
- 机关事业单位财务管理制度(六篇)
- 仓库仓储安全管理培训课件模板
- 风力发电场运行维护手册
- 人教版六年级上册数学第八单元数学广角数与形单元试题含答案
- 叉车租赁合同模板
- 河道旅游开发合同
- 住房公积金稽核审计工作方案例文(4篇)
- 口腔门诊医疗风险规避
评论
0/150
提交评论