版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弦图模型巩固练习1.在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将平行四边形ABCD的四边DA、AB、BC、CD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.2.勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.(1)请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述).(2)以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.(3)利用图2中的直角梯形中线段BC与AD的大小关系,可以证明a+bc3.(1)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.证明:∵大正方形面积表示为S=c2,又可表示为S=4×12ab+(b﹣a)∴4×12ab+(b﹣a)2=c∴即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程.(3)如图3所示,∠ABC=∠ACE=90°,请你添加适当的辅助线,证明结论a2+b2=c2.4.教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图3),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图4,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.5.(1)问题情境:勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,借助“数形关系”利用面积法进行证明,而以刘徽的“青朱出入图”为代表的“无字证明”也颇为神奇,证明不需用任何数学符号和文字,整个证明单靠移动几块图形而得出.如图1和2,将4个全等的直角三角形拼成边长为(a+b)的正方形,使中间留下一个边长为c的空白正方形,画出边长为(a+b)的正方形,再移动三角形至图2所示的位置中,于是留下了边长分别为a和b的两个空白正方形.则图1和图2中的白色部分面积必定相等,即;(2)尝试证明:实际上只需图2的“一半”即可用“数形关系”和面积法证明,美国总统伽菲尔德在1876年利用图3证明了勾股定理,请你来试一试,借助图3完成证明:(3)问题拓展:已知Rt△ABC的两直角边分别为a,b,斜边为c,求证:a+bc6.综合与实践正方形内“奇妙点”及性质探究:定义:如图1,在正方形ABCD中,以BC为直径作半圆O,以D为圆心,DA为半径作AC,与半圆O交于点P我们称点P为正方形ABCD的一个“奇妙点”.过奇妙点的多条线段与正方形ABCD无论是位置关系还是数量关系,都具有不少优美的性质值得探究.性质探究:如图2,连接DP并延长交AB于点E,则DE为半圆O的切线.证明:连接OP,OD.由作图可知,DP=DC,OP=OC,又∵OD=OD.∴△OPD≌△OCD.(SSS)∴∠OPD=∠OCD=90°∴DE是半圆O的切线.问题解决:(1)如图3,在图2的基础上,连接OE.请判断∠BOE和∠CDO的数量关系,并说明理由;(2)在(1)的条件下,请直接写出线段DE,BE,CD之间的数量关系;(3)如图4,已知点P为正方形ABCD的一个“奇妙点”,点O为BC的中点,连接DP并延长交AB于点E,连接CP并延长交AB于点F,请写出BE和AB的数量关系,并说明理由;(4)如图5,已知点E,F,G,H为正方形ABCD的四个“奇妙点”连接AG,BH,CE,DF,恰好得到一个特殊的“赵爽弦图”.请根据图形,探究并直接写岀一个不全等的几何图形面积之间的数量关系.7.如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能医疗设备研发与应用合同协议书3篇
- 2025年度艺术品交易合同的履行与真伪鉴别2篇
- 二零二五年度生物质能源工程合同担保与生物质采购协议3篇
- 二零二五年度服装公司与经销商市场拓展协议3篇
- 2024年版权买卖合同:电子书版权的买卖与分销2篇
- 2024码头工程设备租赁与销售服务合同3篇
- 2024版标准连带担保合同
- 2024年简易货物承运合同示例版B版
- 2025年度脱硫石膏研发与应用推广合同3篇
- 2025年度版权租赁合同规定3篇
- 市政道路实测实量实施标准与方法
- 产品经理必备BP模板(中文版)
- 国家中长期科技发展规划纲要2021-2035
- GB/T 9128.2-2023钢制管法兰用金属环垫第2部分:Class系列
- 工程材料(构配件)设备清单及自检结果表
- 沪教版 三年级数学上册 图形与几何习题2
- 大使涂料(安徽)有限公司年产6万吨科技型工业涂料、水性环保涂料生产项目环境影响报告书
- 利乐包和康美包的比较
- 推动架机械加工工序卡片
- 重庆市綦江区篆塘镇白坪村建筑用砂岩矿采矿权评估报告
- 甘肃社火100首歌词
评论
0/150
提交评论