版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PREPARINGTHE
FOUNDATIONFORTHEAIOFTOMORROW
LianJyeSu,ResearchDirectorMalikSaadi,VicePresident,StrategicTechnologies
CONTENTS
EVERYAIINVESTMENTHASTOBEA
FORWARD-LOOKINGBUSINESSDECISION
The2020sareshapingupasthedecadeofArtificialIntelligence(AI).Withtherightinvestments,thetechnologyispoisedtobewidelydeployedinvariousInformationTechnology(IT)andOperationalTechnology(OT)usecases.PwC’sGlobalAIStudy:ExploitingtheAIRevolutionestimatesthatAIwillcontributeUS$15.7trilliontotheglobaleconomyby2030.
Notsurprisingly,multipleAIadoptionstudiesconductedbymajorAIplayers
revealthatmanybusinesseshaveincreasedtheirAIbudgetquitesignificantly
comparedtopreviousyears.However,mostinvestmentdecisionsaredrivenbythebroadpromiseofAIwithoutfocusingonspecificimplementationhurdlesinlargeorganizationswithlegacyfootprints.Asaresult,manybusinessesriskcreatinga
siloed,looselyintegrated,andproprietarysystem.
ThiswhitepaperaimstounpackthedifferentfacetsofAIandtheirrespective
computationalrequirements,showingthatAIinvestmentsmustbebasedonlong-termbusinessoutcomesandvalues.
EVERYAIINVESTMENTHASTOBEA
FORWARD-LOOKINGBUSINESSDECISION 1
MULTIMODALITYISTHEFUTUREOFAI 2
DIVERSITYINAIIMPLEMENTATION
ENVIRONMENTS 3
PRIVACYANDSECURITY-ENHANCEDAI 4
PREPARINGFORTHEAIOFTOMORROW 4
KEYPRINCIPLESOFAIINFRASTRUCTURE
INVESTMENT 7
CHARACTERISTICSOFAFUTURE-PROOFED
AIINFRASTRUCTURE 8
COMPREHENSIVEANDHETEROGENOUS
INFRASTRUCTURE 11
EDGE-TO-CLOUDVISION 13
OPENNESS 13
SECURITYINFUSEDATEVERYLAYER 14
BACKWARDCOMPATIBILITY 14
KEYTAKEAWAYSANDRECOMMENDATIONS
FORENDUSERS 15
TAKEAWAY1:DEVELOPACLEARINTERNALAI
ROADMAPBASEDONBUSINESSOUTCOMES 15
TAKEAWAY2:GETORGANIZATIONALBUY-IN 16
1
CommissionedbyIntelCorporation.
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
2
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
TAKEAWAY3:FOCUSONSOLUTIONPROVIDERS
ANDCHIPSETSUPPLIERSTHATEMBRACE
OPENNESS,FREEDOMOFCHOICE,TRUST,
ANDSECURITY 16
TAKEAWAY4:LEVERAGESUPPORT
FROMECOSYSTEMPARTNERS 16
CASESTUDY:INTEL 17
MULTIMODALITYISTHEFUTUREOFAI
Beforedivingintotheinfrastructurerequirements,itisworthwhilehavingan
overviewoftoday’sAI.Asimplementedtoday,AIgenerallyfocusesonfourmajorapplications,asdescribedinFigure1.
Figure1:MajorClassesofAIofToday
(Source:ABIResearch)
LANGUAGE
VISION
TABULAR
GRAPH
MULTIMODALAI
AllNaturalLanguageProcessing(NLP)tasks,suchas
Acombinationoftwoorthreedatasourcefor
recommendersystem,conversationalAI,etc.
machinetranslation,sentimentanalysis,speech
enhancement,speechsynthesis,andwakeworddetection.
Facialrecognitionforaccesscontrol,OpticalCharacter
Recognition(OCR),presencedetection,onjectandlandscapedetectionincomputationalphotography,andvideorecognitioninpublicsafetyandtrafficoptimization.
Informationfromvarioussensors,includingpressure,
temperature,vibration,rotation,acceleration,force,andacoustics,tomonitormachines’status,predictequipmentperformance,andtrackimportantassets.
Datathatareconnectedtooneanotherthroughspecific
relationship,suchassocialnetworkgraph,oraresequentialanddemonstratiespecificpatternsinaprocess,suchas
e-commerceconsumptionoronlinesearchdata.
AIapplications,suchasRoboticsProcessAutomation(RPA)andOpticalCharacterRecognition
(OCR),arealreadyautomatingmundaneandrepetitiveworkflows,helpinghumanemployees
performbetterattheircurrenttasksandassistingbusinesseswithstayingcompliantwithlegalrequirements.However,theAImodelsintheseapplicationsarefocusedonahighlystructuredworkloadusingoneofthefourdatatypesmentionedabove:language,vision,tabular,orgraph.Therefore,asignificantportionoftomorrow’sAImodelswillbemoreversatile,leveragingmost,ifnotall,ofthefourdatatypes.
TheseAImodelsaredesignedforavarietyoftasks.Theycanimprovelearning,decision-making,andexperiencesbyrelyingontrainingfromvariousdatasources,recordsandarchives,and
personalinformationwiththeindividual’sexplicitconsent.However,beforethisvisionbecomesareality,theindustryneedstodevelopmorerobustmultimodallearningmodelstoprocess
variousdatainrealtime.Thesemodelswillalsoneedtobesupportedbyhigh-performance
heterogeneouscomputingarchitecturetoenableawiderangeoftasksandfunctions,fromdatagatheringandstructuring,whichconsumesasignificantshareofprocessingresourcestoreal-timeinferenceandothermissioncriticaltasksthatrequireultra-lowlatencyandhighaccuracy.
DIVERSITYINAIIMPLEMENTATIONENVIRONMENTS
AItechnologysuppliersanddevelopersarealsotakingadvantageofnewAItechniquesand
edgecomputingtechnologytodeployAIacrossalldevicesfromthecloudtotheedge.Ononehand,CloudServiceProviders(CSPs)areleveragingscalableandhyperscaledatacentersto
developanddeployhigh-performancevision,language,andgraphmodelsthatareconstantly
increasinginsize.Ontheotherhand,businessesarelookingforAImodelsembeddedindevicesandgatewaystoimprovelatency,protectprivacy,andreducerelianceoncloudinfrastructure.
TinyMachineLearning(TinyML)pushestheboundaryfurtherbyintroducingultra-lowpowerAIinferenceinsensorsandbattery-powereddevices.SoftwarecapabilitieslikeNeuralArchitecturalSearch(NAS)andnewmodelcompressiontechnologieslikeknowledgedistillation,pruning,andquantizationwillenableAIdevelopersandimplementerstocreatethemostoptimizedmodelfortheirtargetenvironment.
AlltheseadvancementsmeanAImodelswillbepresentineverynodeofthecomputing
continuum,rangingfromhyperscaledatacenterstoregionaldatacenters,on-premisesservers,edgecomputinggateways,devices,andsensors.AlltheselocationsenablebusinessestodeployAIatthemostoptimallocationintermsofcomputingpower,latency,connectivity,andregulation.
Inaddition,thearrivalofnext-generationtelecommunicationtechnologies,suchas5Gand
Wi-Fi6,alsoallowsthetransferofalargeamountofdatafortrainingandinference.Whilesuchinfrastructureisnotcurrentlyavailableineverylocation,thisrealitywillchangeascloudAIgiants,telecommunicationserviceproviders,industrialcompanies,andedgecomputingcompanies
continuetobuildtherelevantinfrastructureinthenextfewyears.Asaresult,AIdeveloperswillwidelyintroduceAImodelsbasedonnewtechniques,heterogeneoushardware,andlowlatencyconnectivity.
Figure2:Edge-to-CloudComputingContinuum
(Source:ABIResearch)
Hyperscaledatacenter
Massive-scale
datacenter
builttosupport
alltypesof
workloadsina
centralized
location.
Regionaldatacenter
Regionaldata
center,including
hyperscaler
backbone
andservice
extensionsinto
theenterprise.
Country/metrodatacenter
Country-or
city-leveldata
center,including
hyperscaler
backbone
andservice
extensionsinto
theenterprise.
RadioAccessNetwork(RAN)
Equipmentthat
enablesnetwork
operatorsto
connectcustomer
assetstothe
network.Alsohosts
multi-accessedge
computeserver.
On-premisesserver
Serversthatare
locatedon
customers’
premises
tosupport
alloperational
workloads.
Gateway
Ahubthat
connectsto
multipledevices
andperformsdevicemanagementandconfigurations.
Deviceandsensor
Assets,machinery,toolsandequipment
thatfeature
internet
connectivityand
arelinkedtoa
publicand/or
3
privatedatacenter.
CLOUDCENTRICEDGECENTRIC
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
PRIVACYANDSECURITY-ENHANCEDAI
AsidefromclassicalAIandsomeMachineLearning(ML)models,mostoftoday’sDeepLearning(DL)modelsareblackboxesthatlacktransparency.AIdevelopersdonothavecomplete
knowledgeofalltheindividualneurons,layers,andparametersinaDLmodelthatworktogethertoproducefinaloutput.Theroleofallthesecomponentsandtheirinfluenceovereachother
remainslargelyunexplained.
Movingforward,AIdeveloperswillmakeAImodelsmoretransparent.Inmostcases,adata
andAIdevelopmentplatformwillbedesignedtoexplaintousersthelimitationsoftrainingandtestingdata,thelogicbehindallAItrainingandinferenceprocesses,andpotentialbias,drift,andothergaps.Insomecases,AImodelsmaybedesignedtoexplainthemselvestotheendusers.ThetransparencyandexplainabilitywillenableAImodelstobeusedinhigh-riskenvironments,astheycanwithstandscrutinyandevaluation.
Furthermore,AIdeveloperscanenhancesecurityinanAIsystembylimitingdatatransfertothecloudanddeployingtheAImodelattheedge.Bykeepingandprocessingrawdataattheedge,endusersdonotneedtoworryabouttheirdatabeinghijackedbymaliciousactors.Atthesametime,consumersconcernedaboutstoringPersonalIdentifiableInformation(PII)inthecloudwillnolongerneedtoworry,assuchdatawillbeprocessedinedgedevicesandlocalservers.
PREPARINGFORTHEAIOFTOMORROW
WhenwecomparethestateofAItodaywiththevisionfortomorrow’sAI,afewdistinctcharacteristicsjumpout,asshowninFigure4.
Figure3:AIEvolutionandTechnologicalChallengesandRequirements
(Source:ABIResearch)
TechnologicalChallenges
Specializedandsiloed
AIofTodayAIofTomorrowandRequirements
MultimodallearningmodelwithpowerfulAIchipsetforreal-timeinference
Multi-taskandfullintegration
ContinualimprovementofNAS,modelcompression,andAutoMLSolution
Eithersmallorbig
Diverseinsizeandresourceequipment
Edgecloudoredge
Federatedlearningmodelsthatbenefit
fromincreasingdiversityofcomputing
nodesandhighdatabandwidth
Edge-to-cloudcontinuum
DataandAIdevelopmentplatform
thatcanexplainprediction,visualize
behavior,andresolvebiases
Blackbox
4
Transparentandexplainable
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
TotrulymaketheAIoftomorrowareality,itisapparentthatbusinesseswillneedtocontinuetheirinvestmentintherightAIinfrastructureandapproach.
NewLearningTechniques
TheevolutionofAIwillbeshapedbytheemergenceofnewAItechniques,suchasfederated
learning,multimodallearning,graphDL,reinforcementlearning,andmeta-learning.TheseAI
techniquesuseafullydistributed,highlycustomizedcomputinglandscapetolearnandhandlemultipletasks.Theabilitytointerpretcontextualinformation,understandthelinkagebetweendifferentfactors,andworkandlearnfromotherAImodelscreatesimmenseopportunitiesforAItochangehowbusinessesoperate.Theywillbereadytohandlemorecomplicatedtasksthanhumanemployeescanhandle.
Table1:KeyAITrendsandTheirBusinessImplications
(Source:ABIResearch)
NewAI
Techniques
Descriptions
Strengths
TechnologyPlatformRequirements
Federatedlearning
FederatedlearningisadistributedMLapproachinwhichmultipleuserscollaborativelytrainamodelwithoutmovingdatatoasingleserverordata
center.Instead,eachcomputenodewillexecutethesamemodel,trainsuchamodelonthelocaldata,andthuscomputeandstorealocalversionofthemodelineachnode.
FederatedlearningprovidesedgedeviceswithqualityMLmodelswithoutcentralizingthedata.Deployedinvariousenvironments,includingsmartphones,healthcare,andfinance,thetechniqueallowstheaccessofdatasetsfromdifferentusers,institutions,ordatabases,whilehelpingtocomplywithrequiredprivacyandconfidentialitylaws.
Stableandubiquitous
connectivitybackbone,withAIcomputetakingplacein
localandcloudenvironments.Frequentexchangeofdataandsyncbetweenthecloudanddifferentedgenodestoensurethemodelisuptodate.
Multimodallearning
Multimodallearningcansimultaneouslyprocessvariousdatatypes(image,text,speech,numericaldata)usingmultiplealgorithms.MultimodalAIcaninterpretsuchmultimodalsignalstogetherandmakedecisionsbasedoncontextual
understanding.
AI-basedonmultimodallearningcanmimichumandecision-makingbyingestingdifferentdatasources.Asaresult,itoftenoutperformssingle-modalAIinmanyreal-worldproblems,suchascustomerservices,clientengagement,andpatientcare.
Databasesthatcaningest
variousdatasourcesandAImodelsthatprocessdifferentdatamodalitiesandperforminferenceinreal-time.
Reinforcementlearning
ReinforcementlearningisanMLtrainingmethodthatrewardsthelearningagentwhenmaking
desiredbehaviorsandpunishesitwhenmakingundesiredones.Generally,areinforcement
learningagentcanperceiveandinterpret
itsenvironment,takeactions,andlearnthe
associationsbetweenstimuli,activities,andtheoutcomesofitsactionsthroughtrialanderror.
Reinforcementlearninghasbeenwidelyadoptedin
simulationtotrainandretrainbehaviorsofautonomousvehiclesandrobotsfortrafficmanagement,material
handling,routeoptimization,andspacemanagement.Asidefromthephysicalsystem,thesoftwarecanalsobetrainedusingreinforcementlearningforadata-drivenproductorprocessoptimization,suchassupplychainoptimization,prototyping,andgenerativedesign.
PowerfulAIcomputeplatforminthecloudwithprecise
andrealisticrenderingof
thereal-worldenvironment.
Alternatively,ahighlyoptimized,unsupervisedself-learning
modelinenddevices.
GraphNeuralNetwork(GNN)
GNNsareDLneuralnetworksdesignedtoperforminferenceondatastoredingraphdatabases.Graphdatabasesconnectspecificdatapoints(nodes)andcreaterelationships(edges)intheformofgraphsthattheusercanthenpullwithqueries.TheAIcanunderstandtheinterdependencybetweeneach
datapointandprovidesrelevantpredictions.
GNNsareidealforanalyzingaspecificissuethat
involvesnumerousfactors.Forexample,creditriskforcreditcardcustomersrequiresunderstandingcurrentcreditscores,credithistory,employment,income,andothersocio-economicfactors.Otherusecasesincluderecommendationsystems,molecularcellstructurestudy,readingcomprehension,andsocialinfluenceprediction.
HardwareandsoftwareareoptimizedforGNNs,asGNNstakemuchlongertotrain.
Meta-learning
Meta-learningreferstoMLalgorithmsthat
learnfromtheoutputofotherAIalgorithms.
Thesemodelscanlearnacrossasuiteofrelatedpredictiontasksthroughanadaptiveprocess,
allowingthemtospeeduptheirlearningprocesswhilelearningmultiplefunctionssimultaneously.
Meta-learningisstillembryonic,soitisratherdifficult
topredicthowinfluentialandimpactfulthetechnologywillbecome.Nonetheless,ifthecurrentprediction
isaccurate,meta-learningmodelscanlearnquickly,
requiringlesstrainingtimeandfewerresourcestodesignanddevelop.Thiswillsaveenormousamountsoftimeandacceleratetimetomarket.
Ultra-high-performance
hardwareandsoftware,asmeta-learningisanensembleofthemostadvanced
MLtechniques,suchas
reinforcementlearningandtransferlearning.
5
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
Moreimportantly,theyallowbusinessestoscaleoutandscaleupdependingonbusiness
needswithoutneedingtoexpandandtraintheirworkforce.Someofthesetechniques,suchasfederatedlearningandreinforcementlearning,havealreadybeenadoptedbycloudAIgiantsandlargecorporationstodesignadvancedAImodelsinlarge-scalerecommendersystems,
frauddetection,andvirtualassistance.Meta-learningandGNNs,ontheotherhand,areslowlymaturingandappearinginsomeinterestingusecases,suchasdrugdesign,roboticstraining,anddiseasediagnostics.
OptimizedAIInfrastructure
Inrecentyears,AItechnologyprovidershaveprogressivelyreducedthebarrierstoentryby
activelylaunchinginnovativeproductsandservices.GraphicProcessingUnits(GPUs)and
Application-SpecificIntegratedCircuits(ASICs)arebeingadoptedforAItrainingandinference.
Nowadays,moreandmoregeneral-purposeCentralProcessingUnits(CPUs)cansupportAI
inferenceandtraining.Theintroductionofpre-traininglanguagemodelsallowsdevelopersto
buildcomplexapplications,suchasspeechrecognitionandmachinetranslation,withouttrainingamodelfromscratch.AutoMachineLearning(AutoML)providesmethods,tools,andtechniquestomakethedevelopmentprocesseasierfornon-AIexpertsbyautomatingAIworkflow.
Notsurprisingly,alltheseadvancementshaveledtoahugedemandforAIchipsets.AccordingtoABIResearch’sArtificialIntelligenceandMachineLearningmarketdata(MD-AIML-109),theglobalAIchipsetmarketisestimatedtobeUS$32.3billionin2022.ThisincludesthesalesofAItrainingandinferencechipsets,includingtheCPU,GPU,FieldProgrammableGatedArray(FPGA),NeuralProcessingUnit(NPU),AIaccelerator,microcontroller,andneuromorphicchipset,inalldata
centersandenddevices.Furthermore,thedemocratizationofAIwillleadtoAIbeingdeployedacrossawiderangeofphysicalsitesandcomputenodes.Asaresult,thismarketisexpectedtogrowtoUS$68.8billionin2027,withaCompoundAnnualGrowthRate(CAGR)of26%.
Chart1:TotalRevenuefromAIChipsetSales
WorldMarkets:2020to2027
(Source:ABIResearch)
35
AnnualRevenue(US$Billions)
30
25
20
15
10
5
0
CloudAIChipsetsEdgeAIChipset
6
20202021202220232024202520262027
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
KEYPRINCIPLESOFAIINFRASTRUCTUREINVESTMENT
Today’sAIisnarrowlyfocused,requiresawiderangeofexpertise,andexistsinasilo.Incontrast,theAIoftomorrowrequiresenormousamountsofresourcesanddeeptechnologicalknowledge,whichremainsoutofreachformostbusinesses.Therefore,businessesmuststartearly,identify
thebusinessoutcomesthatcannotbeeasilyachievedwithoutAI,activelybuildinternalcapabilities,androllouttheseadvancedAItechniqueswidelyacrosstheentireorganization.Insummary,
belowarefourkeypillarswhenconsideringAIinfrastructure:
•AIInfrastructureMustBeDrivenbyBusinessOutcomes:ThevisionofAIinfrastructuremustbebasedontheintendedbusinessoutcomeofAIdeployment.Businessesmustfirstunderstandtheshort-andlong-termvaluesAIbringstotheiroperationbeforedesigning
themostsuitableAImodels.WhenanAIprojecthasaclearbusinessoutcome,ithasactualfinancialvaluesthatseniormanagementcanrecognize.
•AIInfrastructureMustBeHeterogenousandFlexible:TounlocktheactualvalueofAI
andyieldmaximumbenefits,scale-upandscale-outofAIapplicationsarecritical.Building
anAIinfrastructurethatofferstheproperfoundationtosupportdifferentfacetsofAImodeldesign,development,anddeploymentacrossdifferentcomputingplatformsgoesalongwaytoprotectandfuture-proofcurrentinvestments.AheterogeneouscomputeplatformwillofferthebestperformanceacrossallAItasks.AIdeveloperscanusetheCPUfordatagatheringandpreparation,beforeswitchingtotheGPUandASICformodeltraining,andfinallyusingeithertheGPU,ASIC,orCPUforAIinferenceworkload.
•AIInfrastructureMustBeBackwardCompatible:AllAIinfrastructuremustbeableto
workwithexistingenterprisesolutions.Therefore,settingaversatile,robust,andinteroperablefoundationwithallexistingsolutionsisamust.Incompatibilityriskscreatingmanysilosinthebusinessoperation,leadingtopoorlyoptimizedIT/OTinfrastructureandprocesses.
•AIInfrastructureMustBeOpenandSecure:Businessesalwayswanttoavoidvendorlock-in.AnAIinfrastructureconsistingofopenhardwareandsoftwarethatcaninteroperatewithothersolutionsissignificantinensuringsmoothIT/OTprocesses.Atthesametime,opennessshouldnotleadtoacompromiseinsecurity.TheAIfoundationmustfeaturestate-of-the-artcybersecurityanddataprotectionmechanismstopreventhacking,protectuserdata,and
7
complywithlegalrequirements.
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
ItisclearthatAIisstillinitsinfancy,andbuildingtheproperfoundationforitiscriticalforits
futuresuccess.InsteadoflookingatAIfromtoday’slens,allbusinessesmusthaveaclearlong-termplan.Thisvisionwillhelpthemnavigatethechallengesandtechnologyrequirementsfor
AI,helpingthemmaketherightdecisionininvestinginthemostoptimalandfuture-proofAI
infrastructure.ThefollowingsectiondiscussesvariousapproachesbusinessescantaketodeployAI.Inaddition,ithighlightsthekeyfeaturesandcharacteristicsbusinessesmustpayattentiontowhenselectingtheirAItechnologies.
CHARACTERISTICSOFAFUTURE-PROOFEDAIINFRASTRUCTURE
EnablingAIbroadlyacrossenterprisesrequiresadifferentmindset.BusinessesmustunderstandthatbuildingAIforbusinessisacontinuousprocessinvolvingmanybuildingblocks.AsshowninFigure5,severalkeyrecentadvancementshaveallowedAItobecomeareality.
Figure4:KeyAITechnologyTrends
(Source:ABIResearch)
User-FriendlyOpen-SourceAITools
DataScienceand
AIDeveloperCommunity
IT/OTConvergence
GrowingAIEcosystem
AI
Democratizationof
ComputingResourcesDemocratizationof
EdgeAI
EmergenceofLargeMLModels
8
AllofthemhaveasignificantimpactonhowbusinessesshoulddeploytheirAI.
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
9
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
Table2:KeyAITechnologyTrendsandTheirBusinessImplications
(Source:ABIResearch)
KeyTrends
Descriptions
BusinessImplications
IT/OT
convergence
ITandOThavetraditionallybeendevelopedseparately,withnoabilitytoexploitoperationsandproductiondatatomakemoreinformeddecisionsforoptimizedworkflowand
well-plannedproductionandmaintenanceprocesses.COVID-19hasspedupthedigitaltransformationprocessinmanybusinesses,leadingtoemergingtechnologies,suchastheInternetofThings(IoT)androboticsautomation.Asaresult,businessesalsostarttocollectmoreoperationaldatathatareveryusefulforplanning,optimization,andupgrades.
Thisconvergencewillenablebusinessestogaininsightandmakedata-drivendecisions.Theycanalsooptimizetheirexistingworkflowswithoutneedingtoscaleuprapidly.
Democratizationofcomputingresources
ThedemocratizationofcomputingresourcesforAIhasbeenachievedbythewideavailabilityofpubliccloudcomputing.Indeed,AIdevelopersmaywanttoleveragethecentralized
processingandstorageofferedbyCSPsinsteadofdeployingtheirownAIhardware,whichisnoteconomicalenough,mainlyforexecutingdenseAInetworks.Theuniformityand
scalabilityofCSPs’computeandstoragearchitectureenablethemtohandlecompute-intensiveDLmodelsonanon-demandbasis,significantlyloweringthebarrier-to-entryforAIdeveloperswithouttheabilitytobuildandmaintaintheirownAIinfrastructure.AsAImodelsarebecomingmorecomplex,theaccessprovidedbyCSPsisessentialforthedemocratizationofAI.
BusinessesmustinvestintherightAIinfrastructurebybuyingfromestablishedCSPsorbuildingtheirprivatecloudinfrastructure.Whilepubliccloud
solutionsarescalable,theycanbecostlywhen
comparedtobeingwell-plannedforprivate
infrastructurebasedonlong-termsgoals.Therefore,businessesshouldalsoconsiderleveragingthe
bestofbothworldswithhybridclouddeploymentstogetthebestprice-performanceadvantageandflexibility.
EmergenceoflargeDLmodels
Anotherprimaryreasonbehindthegaininaccuracyandperformanceisthegrowthin
DLmodels,preciselythenumberofparametersandhyperparameters.AImodelshave
scaledsignificantlyinthepastyears.Dependingontheapplication,largemodelsprovide
fundamentallyuniqueadvantages.Forexample,OpenAI’sGPT-3,widelyconsideredthemostadvancedNaturalLanguageProcessing(NLP)modelof2021,has125millionto175billionparametersandcanhandleadvancedapplications,suchasgenerativeemailsordocumentsummaries.NewermodelslikeBLOOMfromBigScience,whichhas176billionparameters,supportmultiplehumanlanguagesandprogramminglanguages.
BusinessesneedtoconsiderthecostofAItrainingandimplementation.Forcontext,thecloud
computingcostforthetrainingofBLOOM,whichisaround330Gigabytes(GB)insizeisestimatedtobeinthemulti-million-dollarrange.Asidefromtheproperhardwareinfrastructure,businessesmustalsoidentifythesuitableapplicationsandusecasestheywanttodeploy.
DemocratizationofedgeAI
HighlyoptimizedandminiaturizedAImodelsarecurrentlyembeddedinsmartsensors,
devices,andgateways.Thesecarefullycraftedsmallermodelscanalsoperformnarrowly-focusedapplications,specificallyinalways-oncomputervisionandtime-seriesdataanalysis.Solutionprovidershaveintroducedpower-efficientAIprocessors(ASIC,NPU,neuromorphicchipset),DLmodeloptimizationtechniques(knowledgedistillation,pruning,and
quantization),developer-friendlytoolsandservices,andmoreintelligentresourceallocation.
EdgeAIisawaytominimizelatency,privacyrisk,
andconnectivitycosts.Businessesmustlookintothelong-termbenefitsofedgeAIanddevelopastrategytodeployintheiroperation.
GrowingAIecosystem
TheAIecosystemcontinuestogrowatarapidrate.AIstartupsareofferingawiderangeofsolutions.Themostwell-knownstartupsworkonfacialrecognition,AdvancedDriver-AssistanceSystems(ADAS),andNLP.COVID-19hasbecomeacatalystbehindtherapidadoptionofAI-basedenterpriseautomation,suchasRPA,AI-aidedspeechrecognition,transcriptionandtranslation,andsalesandmarketingenablementtools.ThoselookingtobuildtheirowncustomAIwillleantowardstar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度大数据分析与应用简易技术服务合同范本2篇
- 2025年度酒店甲醛浓度达标治理合同范本3篇
- 二零二五年度建筑工程施工现场用电补充协议范本3篇
- 中学生寒假计划安排
- 四川省眉山市仁寿县2024-2025学年高二上学期期末考试历史试题(含答案)
- 人教版九年级历史与社会上册说课稿:第一单元 第一课 世界的格局与第一次世界大战
- Unit 3 Where did you go?PartC (说课稿)-2023-2024学年人教PEP版英语六年级下册
- 胶轮车知识培训课件
- 新疆喀什地区(2024年-2025年小学六年级语文)人教版课后作业((上下)学期)试卷及答案
- 二零二五年度成都二手房买卖合同(含贷款事宜说明)3篇
- 病历质控流程
- 政府采购评审专家考试试题库(完整版)
- 合作投资酒店意向合同范例
- 安全教育教案大班40篇
- 叉车工安全培训资料
- 九年级英语教学反思
- 外研新标准初中英语七年级上册册寒假提升补全对话短文练习三附答案解析
- 《旅游消费者行为学》-课程教学大纲
- YY/T 1117-2024石膏绷带
- 苏教版小学三年级科学上册单元测试题附答案(全册)
- 2024年人教版初一语文(上册)期末试卷及答案(各版本)
评论
0/150
提交评论