2023人工智能白皮书:为AI奠基未来(英文版)_第1页
2023人工智能白皮书:为AI奠基未来(英文版)_第2页
2023人工智能白皮书:为AI奠基未来(英文版)_第3页
2023人工智能白皮书:为AI奠基未来(英文版)_第4页
2023人工智能白皮书:为AI奠基未来(英文版)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PREPARINGTHE

FOUNDATIONFORTHEAIOFTOMORROW

LianJyeSu,ResearchDirectorMalikSaadi,VicePresident,StrategicTechnologies

CONTENTS

EVERYAIINVESTMENTHASTOBEA

FORWARD-LOOKINGBUSINESSDECISION

The2020sareshapingupasthedecadeofArtificialIntelligence(AI).Withtherightinvestments,thetechnologyispoisedtobewidelydeployedinvariousInformationTechnology(IT)andOperationalTechnology(OT)usecases.PwC’sGlobalAIStudy:ExploitingtheAIRevolutionestimatesthatAIwillcontributeUS$15.7trilliontotheglobaleconomyby2030.

Notsurprisingly,multipleAIadoptionstudiesconductedbymajorAIplayers

revealthatmanybusinesseshaveincreasedtheirAIbudgetquitesignificantly

comparedtopreviousyears.However,mostinvestmentdecisionsaredrivenbythebroadpromiseofAIwithoutfocusingonspecificimplementationhurdlesinlargeorganizationswithlegacyfootprints.Asaresult,manybusinessesriskcreatinga

siloed,looselyintegrated,andproprietarysystem.

ThiswhitepaperaimstounpackthedifferentfacetsofAIandtheirrespective

computationalrequirements,showingthatAIinvestmentsmustbebasedonlong-termbusinessoutcomesandvalues.

EVERYAIINVESTMENTHASTOBEA

FORWARD-LOOKINGBUSINESSDECISION 1

MULTIMODALITYISTHEFUTUREOFAI 2

DIVERSITYINAIIMPLEMENTATION

ENVIRONMENTS 3

PRIVACYANDSECURITY-ENHANCEDAI 4

PREPARINGFORTHEAIOFTOMORROW 4

KEYPRINCIPLESOFAIINFRASTRUCTURE

INVESTMENT 7

CHARACTERISTICSOFAFUTURE-PROOFED

AIINFRASTRUCTURE 8

COMPREHENSIVEANDHETEROGENOUS

INFRASTRUCTURE 11

EDGE-TO-CLOUDVISION 13

OPENNESS 13

SECURITYINFUSEDATEVERYLAYER 14

BACKWARDCOMPATIBILITY 14

KEYTAKEAWAYSANDRECOMMENDATIONS

FORENDUSERS 15

TAKEAWAY1:DEVELOPACLEARINTERNALAI

ROADMAPBASEDONBUSINESSOUTCOMES 15

TAKEAWAY2:GETORGANIZATIONALBUY-IN 16

1

CommissionedbyIntelCorporation.

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

2

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

TAKEAWAY3:FOCUSONSOLUTIONPROVIDERS

ANDCHIPSETSUPPLIERSTHATEMBRACE

OPENNESS,FREEDOMOFCHOICE,TRUST,

ANDSECURITY 16

TAKEAWAY4:LEVERAGESUPPORT

FROMECOSYSTEMPARTNERS 16

CASESTUDY:INTEL 17

MULTIMODALITYISTHEFUTUREOFAI

Beforedivingintotheinfrastructurerequirements,itisworthwhilehavingan

overviewoftoday’sAI.Asimplementedtoday,AIgenerallyfocusesonfourmajorapplications,asdescribedinFigure1.

Figure1:MajorClassesofAIofToday

(Source:ABIResearch)

LANGUAGE

VISION

TABULAR

GRAPH

MULTIMODALAI

AllNaturalLanguageProcessing(NLP)tasks,suchas

Acombinationoftwoorthreedatasourcefor

recommendersystem,conversationalAI,etc.

machinetranslation,sentimentanalysis,speech

enhancement,speechsynthesis,andwakeworddetection.

Facialrecognitionforaccesscontrol,OpticalCharacter

Recognition(OCR),presencedetection,onjectandlandscapedetectionincomputationalphotography,andvideorecognitioninpublicsafetyandtrafficoptimization.

Informationfromvarioussensors,includingpressure,

temperature,vibration,rotation,acceleration,force,andacoustics,tomonitormachines’status,predictequipmentperformance,andtrackimportantassets.

Datathatareconnectedtooneanotherthroughspecific

relationship,suchassocialnetworkgraph,oraresequentialanddemonstratiespecificpatternsinaprocess,suchas

e-commerceconsumptionoronlinesearchdata.

AIapplications,suchasRoboticsProcessAutomation(RPA)andOpticalCharacterRecognition

(OCR),arealreadyautomatingmundaneandrepetitiveworkflows,helpinghumanemployees

performbetterattheircurrenttasksandassistingbusinesseswithstayingcompliantwithlegalrequirements.However,theAImodelsintheseapplicationsarefocusedonahighlystructuredworkloadusingoneofthefourdatatypesmentionedabove:language,vision,tabular,orgraph.Therefore,asignificantportionoftomorrow’sAImodelswillbemoreversatile,leveragingmost,ifnotall,ofthefourdatatypes.

TheseAImodelsaredesignedforavarietyoftasks.Theycanimprovelearning,decision-making,andexperiencesbyrelyingontrainingfromvariousdatasources,recordsandarchives,and

personalinformationwiththeindividual’sexplicitconsent.However,beforethisvisionbecomesareality,theindustryneedstodevelopmorerobustmultimodallearningmodelstoprocess

variousdatainrealtime.Thesemodelswillalsoneedtobesupportedbyhigh-performance

heterogeneouscomputingarchitecturetoenableawiderangeoftasksandfunctions,fromdatagatheringandstructuring,whichconsumesasignificantshareofprocessingresourcestoreal-timeinferenceandothermissioncriticaltasksthatrequireultra-lowlatencyandhighaccuracy.

DIVERSITYINAIIMPLEMENTATIONENVIRONMENTS

AItechnologysuppliersanddevelopersarealsotakingadvantageofnewAItechniquesand

edgecomputingtechnologytodeployAIacrossalldevicesfromthecloudtotheedge.Ononehand,CloudServiceProviders(CSPs)areleveragingscalableandhyperscaledatacentersto

developanddeployhigh-performancevision,language,andgraphmodelsthatareconstantly

increasinginsize.Ontheotherhand,businessesarelookingforAImodelsembeddedindevicesandgatewaystoimprovelatency,protectprivacy,andreducerelianceoncloudinfrastructure.

TinyMachineLearning(TinyML)pushestheboundaryfurtherbyintroducingultra-lowpowerAIinferenceinsensorsandbattery-powereddevices.SoftwarecapabilitieslikeNeuralArchitecturalSearch(NAS)andnewmodelcompressiontechnologieslikeknowledgedistillation,pruning,andquantizationwillenableAIdevelopersandimplementerstocreatethemostoptimizedmodelfortheirtargetenvironment.

AlltheseadvancementsmeanAImodelswillbepresentineverynodeofthecomputing

continuum,rangingfromhyperscaledatacenterstoregionaldatacenters,on-premisesservers,edgecomputinggateways,devices,andsensors.AlltheselocationsenablebusinessestodeployAIatthemostoptimallocationintermsofcomputingpower,latency,connectivity,andregulation.

Inaddition,thearrivalofnext-generationtelecommunicationtechnologies,suchas5Gand

Wi-Fi6,alsoallowsthetransferofalargeamountofdatafortrainingandinference.Whilesuchinfrastructureisnotcurrentlyavailableineverylocation,thisrealitywillchangeascloudAIgiants,telecommunicationserviceproviders,industrialcompanies,andedgecomputingcompanies

continuetobuildtherelevantinfrastructureinthenextfewyears.Asaresult,AIdeveloperswillwidelyintroduceAImodelsbasedonnewtechniques,heterogeneoushardware,andlowlatencyconnectivity.

Figure2:Edge-to-CloudComputingContinuum

(Source:ABIResearch)

Hyperscaledatacenter

Massive-scale

datacenter

builttosupport

alltypesof

workloadsina

centralized

location.

Regionaldatacenter

Regionaldata

center,including

hyperscaler

backbone

andservice

extensionsinto

theenterprise.

Country/metrodatacenter

Country-or

city-leveldata

center,including

hyperscaler

backbone

andservice

extensionsinto

theenterprise.

RadioAccessNetwork(RAN)

Equipmentthat

enablesnetwork

operatorsto

connectcustomer

assetstothe

network.Alsohosts

multi-accessedge

computeserver.

On-premisesserver

Serversthatare

locatedon

customers’

premises

tosupport

alloperational

workloads.

Gateway

Ahubthat

connectsto

multipledevices

andperformsdevicemanagementandconfigurations.

Deviceandsensor

Assets,machinery,toolsandequipment

thatfeature

internet

connectivityand

arelinkedtoa

publicand/or

3

privatedatacenter.

CLOUDCENTRICEDGECENTRIC

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

PRIVACYANDSECURITY-ENHANCEDAI

AsidefromclassicalAIandsomeMachineLearning(ML)models,mostoftoday’sDeepLearning(DL)modelsareblackboxesthatlacktransparency.AIdevelopersdonothavecomplete

knowledgeofalltheindividualneurons,layers,andparametersinaDLmodelthatworktogethertoproducefinaloutput.Theroleofallthesecomponentsandtheirinfluenceovereachother

remainslargelyunexplained.

Movingforward,AIdeveloperswillmakeAImodelsmoretransparent.Inmostcases,adata

andAIdevelopmentplatformwillbedesignedtoexplaintousersthelimitationsoftrainingandtestingdata,thelogicbehindallAItrainingandinferenceprocesses,andpotentialbias,drift,andothergaps.Insomecases,AImodelsmaybedesignedtoexplainthemselvestotheendusers.ThetransparencyandexplainabilitywillenableAImodelstobeusedinhigh-riskenvironments,astheycanwithstandscrutinyandevaluation.

Furthermore,AIdeveloperscanenhancesecurityinanAIsystembylimitingdatatransfertothecloudanddeployingtheAImodelattheedge.Bykeepingandprocessingrawdataattheedge,endusersdonotneedtoworryabouttheirdatabeinghijackedbymaliciousactors.Atthesametime,consumersconcernedaboutstoringPersonalIdentifiableInformation(PII)inthecloudwillnolongerneedtoworry,assuchdatawillbeprocessedinedgedevicesandlocalservers.

PREPARINGFORTHEAIOFTOMORROW

WhenwecomparethestateofAItodaywiththevisionfortomorrow’sAI,afewdistinctcharacteristicsjumpout,asshowninFigure4.

Figure3:AIEvolutionandTechnologicalChallengesandRequirements

(Source:ABIResearch)

TechnologicalChallenges

Specializedandsiloed

AIofTodayAIofTomorrowandRequirements

MultimodallearningmodelwithpowerfulAIchipsetforreal-timeinference

Multi-taskandfullintegration

ContinualimprovementofNAS,modelcompression,andAutoMLSolution

Eithersmallorbig

Diverseinsizeandresourceequipment

Edgecloudoredge

Federatedlearningmodelsthatbenefit

fromincreasingdiversityofcomputing

nodesandhighdatabandwidth

Edge-to-cloudcontinuum

DataandAIdevelopmentplatform

thatcanexplainprediction,visualize

behavior,andresolvebiases

Blackbox

4

Transparentandexplainable

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

TotrulymaketheAIoftomorrowareality,itisapparentthatbusinesseswillneedtocontinuetheirinvestmentintherightAIinfrastructureandapproach.

NewLearningTechniques

TheevolutionofAIwillbeshapedbytheemergenceofnewAItechniques,suchasfederated

learning,multimodallearning,graphDL,reinforcementlearning,andmeta-learning.TheseAI

techniquesuseafullydistributed,highlycustomizedcomputinglandscapetolearnandhandlemultipletasks.Theabilitytointerpretcontextualinformation,understandthelinkagebetweendifferentfactors,andworkandlearnfromotherAImodelscreatesimmenseopportunitiesforAItochangehowbusinessesoperate.Theywillbereadytohandlemorecomplicatedtasksthanhumanemployeescanhandle.

Table1:KeyAITrendsandTheirBusinessImplications

(Source:ABIResearch)

NewAI

Techniques

Descriptions

Strengths

TechnologyPlatformRequirements

Federatedlearning

FederatedlearningisadistributedMLapproachinwhichmultipleuserscollaborativelytrainamodelwithoutmovingdatatoasingleserverordata

center.Instead,eachcomputenodewillexecutethesamemodel,trainsuchamodelonthelocaldata,andthuscomputeandstorealocalversionofthemodelineachnode.

FederatedlearningprovidesedgedeviceswithqualityMLmodelswithoutcentralizingthedata.Deployedinvariousenvironments,includingsmartphones,healthcare,andfinance,thetechniqueallowstheaccessofdatasetsfromdifferentusers,institutions,ordatabases,whilehelpingtocomplywithrequiredprivacyandconfidentialitylaws.

Stableandubiquitous

connectivitybackbone,withAIcomputetakingplacein

localandcloudenvironments.Frequentexchangeofdataandsyncbetweenthecloudanddifferentedgenodestoensurethemodelisuptodate.

Multimodallearning

Multimodallearningcansimultaneouslyprocessvariousdatatypes(image,text,speech,numericaldata)usingmultiplealgorithms.MultimodalAIcaninterpretsuchmultimodalsignalstogetherandmakedecisionsbasedoncontextual

understanding.

AI-basedonmultimodallearningcanmimichumandecision-makingbyingestingdifferentdatasources.Asaresult,itoftenoutperformssingle-modalAIinmanyreal-worldproblems,suchascustomerservices,clientengagement,andpatientcare.

Databasesthatcaningest

variousdatasourcesandAImodelsthatprocessdifferentdatamodalitiesandperforminferenceinreal-time.

Reinforcementlearning

ReinforcementlearningisanMLtrainingmethodthatrewardsthelearningagentwhenmaking

desiredbehaviorsandpunishesitwhenmakingundesiredones.Generally,areinforcement

learningagentcanperceiveandinterpret

itsenvironment,takeactions,andlearnthe

associationsbetweenstimuli,activities,andtheoutcomesofitsactionsthroughtrialanderror.

Reinforcementlearninghasbeenwidelyadoptedin

simulationtotrainandretrainbehaviorsofautonomousvehiclesandrobotsfortrafficmanagement,material

handling,routeoptimization,andspacemanagement.Asidefromthephysicalsystem,thesoftwarecanalsobetrainedusingreinforcementlearningforadata-drivenproductorprocessoptimization,suchassupplychainoptimization,prototyping,andgenerativedesign.

PowerfulAIcomputeplatforminthecloudwithprecise

andrealisticrenderingof

thereal-worldenvironment.

Alternatively,ahighlyoptimized,unsupervisedself-learning

modelinenddevices.

GraphNeuralNetwork(GNN)

GNNsareDLneuralnetworksdesignedtoperforminferenceondatastoredingraphdatabases.Graphdatabasesconnectspecificdatapoints(nodes)andcreaterelationships(edges)intheformofgraphsthattheusercanthenpullwithqueries.TheAIcanunderstandtheinterdependencybetweeneach

datapointandprovidesrelevantpredictions.

GNNsareidealforanalyzingaspecificissuethat

involvesnumerousfactors.Forexample,creditriskforcreditcardcustomersrequiresunderstandingcurrentcreditscores,credithistory,employment,income,andothersocio-economicfactors.Otherusecasesincluderecommendationsystems,molecularcellstructurestudy,readingcomprehension,andsocialinfluenceprediction.

HardwareandsoftwareareoptimizedforGNNs,asGNNstakemuchlongertotrain.

Meta-learning

Meta-learningreferstoMLalgorithmsthat

learnfromtheoutputofotherAIalgorithms.

Thesemodelscanlearnacrossasuiteofrelatedpredictiontasksthroughanadaptiveprocess,

allowingthemtospeeduptheirlearningprocesswhilelearningmultiplefunctionssimultaneously.

Meta-learningisstillembryonic,soitisratherdifficult

topredicthowinfluentialandimpactfulthetechnologywillbecome.Nonetheless,ifthecurrentprediction

isaccurate,meta-learningmodelscanlearnquickly,

requiringlesstrainingtimeandfewerresourcestodesignanddevelop.Thiswillsaveenormousamountsoftimeandacceleratetimetomarket.

Ultra-high-performance

hardwareandsoftware,asmeta-learningisanensembleofthemostadvanced

MLtechniques,suchas

reinforcementlearningandtransferlearning.

5

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

Moreimportantly,theyallowbusinessestoscaleoutandscaleupdependingonbusiness

needswithoutneedingtoexpandandtraintheirworkforce.Someofthesetechniques,suchasfederatedlearningandreinforcementlearning,havealreadybeenadoptedbycloudAIgiantsandlargecorporationstodesignadvancedAImodelsinlarge-scalerecommendersystems,

frauddetection,andvirtualassistance.Meta-learningandGNNs,ontheotherhand,areslowlymaturingandappearinginsomeinterestingusecases,suchasdrugdesign,roboticstraining,anddiseasediagnostics.

OptimizedAIInfrastructure

Inrecentyears,AItechnologyprovidershaveprogressivelyreducedthebarrierstoentryby

activelylaunchinginnovativeproductsandservices.GraphicProcessingUnits(GPUs)and

Application-SpecificIntegratedCircuits(ASICs)arebeingadoptedforAItrainingandinference.

Nowadays,moreandmoregeneral-purposeCentralProcessingUnits(CPUs)cansupportAI

inferenceandtraining.Theintroductionofpre-traininglanguagemodelsallowsdevelopersto

buildcomplexapplications,suchasspeechrecognitionandmachinetranslation,withouttrainingamodelfromscratch.AutoMachineLearning(AutoML)providesmethods,tools,andtechniquestomakethedevelopmentprocesseasierfornon-AIexpertsbyautomatingAIworkflow.

Notsurprisingly,alltheseadvancementshaveledtoahugedemandforAIchipsets.AccordingtoABIResearch’sArtificialIntelligenceandMachineLearningmarketdata(MD-AIML-109),theglobalAIchipsetmarketisestimatedtobeUS$32.3billionin2022.ThisincludesthesalesofAItrainingandinferencechipsets,includingtheCPU,GPU,FieldProgrammableGatedArray(FPGA),NeuralProcessingUnit(NPU),AIaccelerator,microcontroller,andneuromorphicchipset,inalldata

centersandenddevices.Furthermore,thedemocratizationofAIwillleadtoAIbeingdeployedacrossawiderangeofphysicalsitesandcomputenodes.Asaresult,thismarketisexpectedtogrowtoUS$68.8billionin2027,withaCompoundAnnualGrowthRate(CAGR)of26%.

Chart1:TotalRevenuefromAIChipsetSales

WorldMarkets:2020to2027

(Source:ABIResearch)

35

AnnualRevenue(US$Billions)

30

25

20

15

10

5

0

CloudAIChipsetsEdgeAIChipset

6

20202021202220232024202520262027

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

KEYPRINCIPLESOFAIINFRASTRUCTUREINVESTMENT

Today’sAIisnarrowlyfocused,requiresawiderangeofexpertise,andexistsinasilo.Incontrast,theAIoftomorrowrequiresenormousamountsofresourcesanddeeptechnologicalknowledge,whichremainsoutofreachformostbusinesses.Therefore,businessesmuststartearly,identify

thebusinessoutcomesthatcannotbeeasilyachievedwithoutAI,activelybuildinternalcapabilities,androllouttheseadvancedAItechniqueswidelyacrosstheentireorganization.Insummary,

belowarefourkeypillarswhenconsideringAIinfrastructure:

•AIInfrastructureMustBeDrivenbyBusinessOutcomes:ThevisionofAIinfrastructuremustbebasedontheintendedbusinessoutcomeofAIdeployment.Businessesmustfirstunderstandtheshort-andlong-termvaluesAIbringstotheiroperationbeforedesigning

themostsuitableAImodels.WhenanAIprojecthasaclearbusinessoutcome,ithasactualfinancialvaluesthatseniormanagementcanrecognize.

•AIInfrastructureMustBeHeterogenousandFlexible:TounlocktheactualvalueofAI

andyieldmaximumbenefits,scale-upandscale-outofAIapplicationsarecritical.Building

anAIinfrastructurethatofferstheproperfoundationtosupportdifferentfacetsofAImodeldesign,development,anddeploymentacrossdifferentcomputingplatformsgoesalongwaytoprotectandfuture-proofcurrentinvestments.AheterogeneouscomputeplatformwillofferthebestperformanceacrossallAItasks.AIdeveloperscanusetheCPUfordatagatheringandpreparation,beforeswitchingtotheGPUandASICformodeltraining,andfinallyusingeithertheGPU,ASIC,orCPUforAIinferenceworkload.

•AIInfrastructureMustBeBackwardCompatible:AllAIinfrastructuremustbeableto

workwithexistingenterprisesolutions.Therefore,settingaversatile,robust,andinteroperablefoundationwithallexistingsolutionsisamust.Incompatibilityriskscreatingmanysilosinthebusinessoperation,leadingtopoorlyoptimizedIT/OTinfrastructureandprocesses.

•AIInfrastructureMustBeOpenandSecure:Businessesalwayswanttoavoidvendorlock-in.AnAIinfrastructureconsistingofopenhardwareandsoftwarethatcaninteroperatewithothersolutionsissignificantinensuringsmoothIT/OTprocesses.Atthesametime,opennessshouldnotleadtoacompromiseinsecurity.TheAIfoundationmustfeaturestate-of-the-artcybersecurityanddataprotectionmechanismstopreventhacking,protectuserdata,and

7

complywithlegalrequirements.

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

ItisclearthatAIisstillinitsinfancy,andbuildingtheproperfoundationforitiscriticalforits

futuresuccess.InsteadoflookingatAIfromtoday’slens,allbusinessesmusthaveaclearlong-termplan.Thisvisionwillhelpthemnavigatethechallengesandtechnologyrequirementsfor

AI,helpingthemmaketherightdecisionininvestinginthemostoptimalandfuture-proofAI

infrastructure.ThefollowingsectiondiscussesvariousapproachesbusinessescantaketodeployAI.Inaddition,ithighlightsthekeyfeaturesandcharacteristicsbusinessesmustpayattentiontowhenselectingtheirAItechnologies.

CHARACTERISTICSOFAFUTURE-PROOFEDAIINFRASTRUCTURE

EnablingAIbroadlyacrossenterprisesrequiresadifferentmindset.BusinessesmustunderstandthatbuildingAIforbusinessisacontinuousprocessinvolvingmanybuildingblocks.AsshowninFigure5,severalkeyrecentadvancementshaveallowedAItobecomeareality.

Figure4:KeyAITechnologyTrends

(Source:ABIResearch)

User-FriendlyOpen-SourceAITools

DataScienceand

AIDeveloperCommunity

IT/OTConvergence

GrowingAIEcosystem

AI

Democratizationof

ComputingResourcesDemocratizationof

EdgeAI

EmergenceofLargeMLModels

8

AllofthemhaveasignificantimpactonhowbusinessesshoulddeploytheirAI.

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

9

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

Table2:KeyAITechnologyTrendsandTheirBusinessImplications

(Source:ABIResearch)

KeyTrends

Descriptions

BusinessImplications

IT/OT

convergence

ITandOThavetraditionallybeendevelopedseparately,withnoabilitytoexploitoperationsandproductiondatatomakemoreinformeddecisionsforoptimizedworkflowand

well-plannedproductionandmaintenanceprocesses.COVID-19hasspedupthedigitaltransformationprocessinmanybusinesses,leadingtoemergingtechnologies,suchastheInternetofThings(IoT)androboticsautomation.Asaresult,businessesalsostarttocollectmoreoperationaldatathatareveryusefulforplanning,optimization,andupgrades.

Thisconvergencewillenablebusinessestogaininsightandmakedata-drivendecisions.Theycanalsooptimizetheirexistingworkflowswithoutneedingtoscaleuprapidly.

Democratizationofcomputingresources

ThedemocratizationofcomputingresourcesforAIhasbeenachievedbythewideavailabilityofpubliccloudcomputing.Indeed,AIdevelopersmaywanttoleveragethecentralized

processingandstorageofferedbyCSPsinsteadofdeployingtheirownAIhardware,whichisnoteconomicalenough,mainlyforexecutingdenseAInetworks.Theuniformityand

scalabilityofCSPs’computeandstoragearchitectureenablethemtohandlecompute-intensiveDLmodelsonanon-demandbasis,significantlyloweringthebarrier-to-entryforAIdeveloperswithouttheabilitytobuildandmaintaintheirownAIinfrastructure.AsAImodelsarebecomingmorecomplex,theaccessprovidedbyCSPsisessentialforthedemocratizationofAI.

BusinessesmustinvestintherightAIinfrastructurebybuyingfromestablishedCSPsorbuildingtheirprivatecloudinfrastructure.Whilepubliccloud

solutionsarescalable,theycanbecostlywhen

comparedtobeingwell-plannedforprivate

infrastructurebasedonlong-termsgoals.Therefore,businessesshouldalsoconsiderleveragingthe

bestofbothworldswithhybridclouddeploymentstogetthebestprice-performanceadvantageandflexibility.

EmergenceoflargeDLmodels

Anotherprimaryreasonbehindthegaininaccuracyandperformanceisthegrowthin

DLmodels,preciselythenumberofparametersandhyperparameters.AImodelshave

scaledsignificantlyinthepastyears.Dependingontheapplication,largemodelsprovide

fundamentallyuniqueadvantages.Forexample,OpenAI’sGPT-3,widelyconsideredthemostadvancedNaturalLanguageProcessing(NLP)modelof2021,has125millionto175billionparametersandcanhandleadvancedapplications,suchasgenerativeemailsordocumentsummaries.NewermodelslikeBLOOMfromBigScience,whichhas176billionparameters,supportmultiplehumanlanguagesandprogramminglanguages.

BusinessesneedtoconsiderthecostofAItrainingandimplementation.Forcontext,thecloud

computingcostforthetrainingofBLOOM,whichisaround330Gigabytes(GB)insizeisestimatedtobeinthemulti-million-dollarrange.Asidefromtheproperhardwareinfrastructure,businessesmustalsoidentifythesuitableapplicationsandusecasestheywanttodeploy.

DemocratizationofedgeAI

HighlyoptimizedandminiaturizedAImodelsarecurrentlyembeddedinsmartsensors,

devices,andgateways.Thesecarefullycraftedsmallermodelscanalsoperformnarrowly-focusedapplications,specificallyinalways-oncomputervisionandtime-seriesdataanalysis.Solutionprovidershaveintroducedpower-efficientAIprocessors(ASIC,NPU,neuromorphicchipset),DLmodeloptimizationtechniques(knowledgedistillation,pruning,and

quantization),developer-friendlytoolsandservices,andmoreintelligentresourceallocation.

EdgeAIisawaytominimizelatency,privacyrisk,

andconnectivitycosts.Businessesmustlookintothelong-termbenefitsofedgeAIanddevelopastrategytodeployintheiroperation.

GrowingAIecosystem

TheAIecosystemcontinuestogrowatarapidrate.AIstartupsareofferingawiderangeofsolutions.Themostwell-knownstartupsworkonfacialrecognition,AdvancedDriver-AssistanceSystems(ADAS),andNLP.COVID-19hasbecomeacatalystbehindtherapidadoptionofAI-basedenterpriseautomation,suchasRPA,AI-aidedspeechrecognition,transcriptionandtranslation,andsalesandmarketingenablementtools.ThoselookingtobuildtheirowncustomAIwillleantowardstar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论