21.4二次函数的应用同步练习2023-2024学年沪科版 九年级数学上册_第1页
21.4二次函数的应用同步练习2023-2024学年沪科版 九年级数学上册_第2页
21.4二次函数的应用同步练习2023-2024学年沪科版 九年级数学上册_第3页
21.4二次函数的应用同步练习2023-2024学年沪科版 九年级数学上册_第4页
21.4二次函数的应用同步练习2023-2024学年沪科版 九年级数学上册_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

21.4二次函数的应用第一课时一、单选题1.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是()A. B. C. D.2.一位运动员在距篮筐正下方水平距离处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为时,达到最大高度,然后准确落入篮筐.如图所示,建立平面直角坐标系,已知篮筐中心到地面的距离为,该运动员身高,在这次跳投中,球在头顶上方处出手,球出手时,他跳离地面的高度是()A. B. C. D.3.某地网红秋千在推出后吸引了大量游客前来,其秋千高度h(单位:m)与时间t(单位:s)之间的关系可以近似地用二次函数刻画,其图象如图所示,已知秋千在静止时的高度为0.6m.根据图象,当推出秋千3s后,秋千的高度为()A.10m B.15m C.16m D.18m4.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A. B. C. D.5.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是()A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元二、填空题6.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元.7.在平面直角坐标系xOy中,函数y1=x(x<m)的图象与函数y2=x2(x≥m)的图象组成图形G.对于任意实数n,过点P(0,n)且与x轴平行的直线总与图形G有公共点,写出一个满足条件的实数m的值为_____(写出一个即可).8.把一根长为50cm的铁丝弯成一个长方形,设这个长方形一边的长为xcm,它的面积为ycm2,则y与x之间的函数关系式为____.9.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.三、解答题10.某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每降价10元,则每天可多售出50双.设每双降价x元,每天总获利y元.(1)如果降价40元,每天总获利多少元呢?(2)每双售价为多少元时,每天的总获利最大?最大获利是多少?11.某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.

12.某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由13.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金,某电视台栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量(件)与销售价(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其他费用为106元(不包含债务).(1)求日销售量(件)与销售价(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最少需要多少天能还清所有债务,此时每件服装的价格应定为多少元?14.某商店以每件50元的价格购进一批新型产品,如果按每件60元出售,那么每周可销售500件.根据市场规律,这种产品的销售单价每提高1元,其销售量每周相应减少10件,但每件产品的销售单价不低于60元,且不能高于85元,设每周的销售量为y(件),这种产品的销售单价为x(元),解答下列问题:(1)请直接写出y与x之间的函数关系式;(2)商家要想每周获得8000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每周获得的销售利润最大?最大利润是多少元?第二课时一、单选题1.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是()A.①④ B.①② C.②③④ D.②③2.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A.y=(x﹣40)(500﹣10x) B.y=(x﹣40)(10x﹣500)C.y=(x﹣40)[500﹣10(x﹣50)]D.y=(x﹣40)[500﹣10(50﹣x)]3.如图,两条抛物线y1=-x2+1,y2=-x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为()A.8 B.6 C.10 D.44.如图,正方形的边长为,动点,同时从点出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点运动终止,连接,设运动时间为,的面积为,则下列图象中能大致表示与的函数关系的是()A. B.C. D.5.已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个 B.2个 C.3个 D.4个二、填空题6.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为______________.7.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.8.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围、两边).设,若在处有一棵树与墙、的距离分别是和,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积的最大值为___.9.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.三、解答题10.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?11.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.12.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?13.如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N,FN⊥BC.(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y.①求y与x的函数关系式;②当x取何值时,y有最大值,并求出这个最大值.14.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.第一课时答案一、单选题B.A.B.B.D.二、填空题6.707.1(答案不唯一)8.9.-1三、解答题10.(1)根据题意知:每降价1元,则每天可多售出5双,∴(400+5×40)×(300-40-100)=600×160=96000(元)答:如果降价40元,每天总获利96000元.(2)根据题意,得y=(400+5x)(300-x-100)=-5x2+600x+80000=-5(x—60)2+98000∵a=-5,开口向下,y有最大值,∴当x=60时,即当售价为300—60=240元时,y有最大值=98000元答:每双售价为240元时,每天的总获利最大,最大获利是98000元.11.解:(1)①设AB的长是x米,则AD=20-3x,根据题意得,x(20-3x)=25,解得:x1=5,x2=,当x=时,AD=15>6,∴x=5,∴AD=5,答:AD的长是5米;②设AB的长是x米,矩形花圃的最大面积是y平分米,则AD=(20-3x+6),根据题意得,y=x(20-3x+6)=-x2+13x=-(x-)2+,答:按图乙的方案,能围成的矩形花圃的最大面积是平方米;(2)按图甲的方案,设AB=x,能围成的矩形花圃的面积为S,∴S=x(20-3x)=-3x2+20x=-3(x-)2+,当x=时,AD=10>a,故第二种方案能围成面积最大的矩形花圃.12.(1)如图,设抛物线对应的函数关系式为y=ax2抛物线的顶点为原点,隧道宽6m,高5m,矩形的高为2m,所以抛物线过点A(−3,−3),代入得−3=9a,解得a=−,所以函数关系式为(2)如果此车能通过隧道,集装箱处于对称位置,将x=1.5代入抛物线方程,得y=−0.75,此时集装箱角离隧道的底为5−0.75=4.25米,不及车与箱总高4.5米,即4.25<4.5.从而此车不能通过此隧道.13.(1)当时,设y与x的函数关系式为y=k1x+b1,由图象可得,解得,∴y=-2x+140.当时,设y与x的函数关系式为y=k2x+b2,由图象得,解得,∴y=-x+82.综上所述:y与x的函数关系式为;(2)设该店员工的人数为a,当x=48时,y=-2×48+140=44,∴(48-40)×44=106+82a,解得a=3.(3)设该店还清所有债务需要b天,则:b[(x-40)y-82×2-106]68400∴b.当时,由(1)知:.b∵x=55时,-2(x-55)2+180的最大值为180,∴b,即b380.当时,由(1)知:b∵x=61时,-(x-61)2+171的最大值为171,∴b,即b400.综合两种情形得b380,即该店最少需要380天能还清所有债务,此时每件服装的价格应定为55元.14.解:(1)由题意可得;(2)由题意可得:解得:(不符合x的取值范围,故舍去)答:商家要想每周获得8000元的销售利润,销售单价应定为70元.(3)设销售利润为w,由题意可得∵-10<0∴当x=80时,销售利润为w的最大值为9000答:销售单价为80元时,每周获得的销售利润最大,最大利润9000元.第二课时答案一、单选题D.C.A.A.C.二、填空题7.0.58.1809.10三、解答题10.(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得解得∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.11.(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,连接DC、BC、DB,由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)y=﹣x2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,(不满足在对称轴右侧应舍去),∴x=,∴y=4﹣x=,即点P1坐标为(,).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论