版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四、二次曲面第三节一、曲面方程的概念二、旋转曲面
三、柱面曲面及其方程第八章一、曲面方程的概念求到两定点A(1,2,3)
和B(2,-1,4)等距离的点的化简得即说明:动点轨迹为线段
AB的垂直平分面.引例:显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.解:设轨迹上的动点为轨迹方程.
定义1.如果曲面
S
与方程
F(x,y,z)=0有下述关系:(1)曲面
S上的任意点的坐标都满足此方程则F(x,y,z)=0
叫做曲面
S
的方程,曲面S叫做方程F(x,y,z)=0的图形.两个基本问题:(1)已知一曲面作为点的几何轨迹时,(2)不在曲面S上的点的坐标不满足此方程求曲面方程.(2)已知方程时,研究它所表示的几何形状(必要时需作图).例2.研究方程解:
配方得可见此方程表示一个球面说明:如下形式的三元二次方程
(A≠0)都可通过配方研究它的图形.其图形可能是的曲面.表示怎样半径为球心为一个球面,或点,或虚轨迹.定义2.一条平面曲线二、旋转曲面
绕其平面上一条定直线旋转一周所形成的曲面叫做旋转曲面.该定直线称为旋转轴.例如:建立yOz面上曲线C
绕
z
轴旋转所成曲面的方程:故旋转曲面方程为当绕
z轴旋转时,若点给定yOz
面上曲线
C:则有则有该点转到思考:当曲线C绕y轴旋转时,方程如何?例3.试建立顶点在原点,旋转轴为z轴,半顶角为的圆锥面方程.解:在yOz面上直线L的方程为绕z
轴旋转时,圆锥面的方程为两边平方例4.
求坐标面xOz
上的双曲线分别绕
x轴和
z
轴旋转一周所生成的旋转曲面方程.解:绕
x
轴旋转绕
z
轴旋转这两种曲面都叫做旋转双曲面(双叶、单叶).所成曲面方程为所成曲面方程为三、柱面引例.分析方程表示怎样的曲面.的坐标也满足方程解:在
xOy面上,表示圆C,沿圆周C平行于z轴的一切直线所形成的曲面称为圆故在空间过此点作柱面.对任意
z,平行z
轴的直线
l,表示圆柱面在圆C上任取一点其上所有点的坐标都满足此方程,定义3.平行定直线并沿定曲线C移动的直线l形成的轨迹叫做柱面.
表示抛物柱面,母线平行于z轴;准线为xOy面上的抛物线.
z轴的椭圆柱面.
z轴的平面.
表示母线平行于(且z
轴在平面上)表示母线平行于C叫做准线,l
叫做母线.一般地,在三维空间柱面,柱面,平行于x
轴;平行于
y
轴;平行于
z
轴;准线xOz
面上的曲线l3.母线柱面,准线
xOy
面上的曲线l1.母线准线
yOz面上的曲线l2.母线四、二次曲面三元二次方程适当选取直角坐标系可得它们的标准方程,下面仅就几种常见标准型的特点进行介绍.研究二次曲面特性的基本方法:截痕法、*伸缩变形法其基本类型有:椭球面、抛物面、双曲面、锥面的图形统称为二次曲面.(二次项系数不全为0)1.椭球面(1)范围:(2)与坐标面的交线:椭圆与的交线为椭圆:(4)当a=b时为旋转椭球面;同样的截痕及也为椭圆.当a=b=c时为球面.(3)截痕:为正数)2.抛物面(1)椭圆抛物面(p,q
同号)(2)双曲抛物面(鞍形曲面)(p,q同号)特别,当p=q时为绕z轴的旋转抛物面.(2)双叶双曲面二者的区别:单叶双曲面双叶双曲面P183.双曲面(1)单叶双曲面4.椭圆锥面椭圆在平面x=0或y=0上的截痕为过原点的两直线.可以证明,椭圆①上任一点与原点的连线均在曲面上.①(椭圆锥面也可由圆锥面经x或y方向的伸缩变换得到,见P28)内容小结1.空间曲面三元方程球面旋转曲面如,曲线绕z轴的旋转曲面:
柱面如,曲面表示母线平行z轴的柱面.又如,椭圆柱面,双曲柱面,抛物柱面等.2.二次曲面三元二次方程椭球面抛物面:椭圆抛物面双曲抛物面双曲面:单叶双曲面双叶双曲面椭圆锥面:斜率为1的直线平面解析几何中空间解析几何中方程平行于y轴的直线平行于yOz
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大清包劳务工程合同样本4篇
- 企业员工借款引起的劳动争议调解服务合同20253篇
- 2025年度承包工地食堂食材采购与加工合同4篇
- 2025版美容院专业设备租赁服务合同样本4篇
- 2025年度车辆运输服务与货物包装标准合同4篇
- 针对2025年度产品的生产制造合同
- 个人承包物业公司客服服务合同2024年度3篇
- 二零二五版美容美发行业品牌形象设计服务合同4篇
- 2025年度生态鱼塘承包经营权转让合同书4篇
- 2025年铁艺大门企业品牌形象设计与推广合同3篇
- 物业民法典知识培训课件
- 2023年初中毕业生信息技术中考知识点详解
- 《万方数据资源介绍》课件
- 第一章-地震工程学概论
- 2024年浙江省中考数学试题及答案
- 2025届江苏省南京高考历史一模试卷含解析
- 浙江省金华市金东区2022-2024年中考二模英语试题汇编:任务型阅读
- 青岛版(五四制)四年级数学下册全册课件
- 大健康行业研究课件
- 租赁汽车可行性报告
- 计算机辅助设计AutoCAD绘图-课程教案
评论
0/150
提交评论