下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(九)曲线与方程(30分钟50分)一、选择题(每小题3分,共18分)1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C.由曲线与方程的概念可知,若点P(x0,y0)在曲线f(x,y)=0上,则必有f(x0,y0)=0;又当f(x0,y0)=0时,点P(x0,y0)也确定在方程f(x,y)=0对应的曲线上,故选C.2.下面四组方程表示同一条曲线的一组是()A.y2=x与y=xB.y=lgx2与y=2lgxC.y+1x-2=1与lg(y+1)=D.x2+y2=1与|y|=1【解析】选D.主要考虑x,y的取值范围,A中y2=x中y∈R,而y=x中y≥0,B中y=lgx2中x≠0,而y=2lgx中x>0;C中y+1x-2=1中y∈R,x≠2,而lg(y+1)=lg(x-2)中y>-1,x>2,故只有D3.(2022·石家庄高二检测)方程x2+y2=1(xy<0)的曲线外形是()【解析】选C.方程x2+y2=1(xy<0)表示以原点为圆心,1为半径的圆在其次、四象限的部分.4.(2022·安阳高二检测)曲线y=1-x2A.3B.2C.1D.0【解析】选C.由y=1-x2,两边平方并整理得(2x-1)2=0,所以x=22,这时y=22,故公共点只有一个【误区警示】解题中易忽视y=1-x2中x的取值范围,而写成x25.假如曲线C上点的坐标满足方程F(x,y)=0,则有()A.方程F(x,y)=0表示的曲线是CB.曲线C的方程是F(x,y)=0C.点集{P|P∈C}⊆{(x,y)|F(x,y)=0}D.点集{P|P∈C}{(x,y)|F(x,y)=0}【解析】选C.A,B错,由于以方程F(x,y)=0的解为坐标的点不愿定在曲线C上,若以方程F(x,y)=0的解为坐标的点都在曲线C上,则点集{P|P∈C}={(x,y)|F(x,y)=0},故D错,选C.6.(2022·青岛高二检测)方程(x-y)2+(xy-1)2=0表示的是()A.两条直线 B.一条直线和一双曲线C.两个点 D.圆【解析】选C.由题意,x所以x=1,y=1或x=-1,y=-1,所以方程(x-y)2+(xy-1)2=0表示的是两个点(1,1)或(-1,-1).二、填空题(每小题4分,共12分)7.(2022·天津高二检测)点P(2,-3)在曲线x2-ay2=1上,则a=.【解析】将(2,-3)代入x2-ay2=1,得a=13答案:1【变式训练】已知点A(a,2)既是曲线y=mx2上的点,也是直线x-y=0上的一点,则m=.【解析】由于点A(a,2)在直线x-y=0上,得a=2,即A(2,2).又点A在曲线y=mx2上,所以2=m·22,得m=12答案:18.(2022·重庆高二检测)假如直线l:x+y-b=0与曲线C:y=1-x2【解题指南】本题考查曲线的交点问题,可以先作出曲线y=1-【解析】曲线C:y=1-x2表示以原点为圆心,以1为半径的单位圆的上半部分(包括(±1,0)),如图,当l与l1重合时,b=-1,当l与l2所以直线l与曲线C有公共点时,-1≤b≤2.答案:[-1,2]9.方程y=x2-4x+4所表示的曲线是【解析】原方程可化为:y=|x-2|=x所以方程表示的是射线x-y-2=0(x≥2)及x+y-2=0(x<2).答案:两条射线【误区警示】本题易忽视方程自身的条件对y的约束,即y≥0,而将方程变形为(x+y-2)(x-y-2)=0,从而得出方程表示的曲线是两条直线.三、解答题(每小题10分,共20分)10.方程1-|x|=1【解析】原方程可化为1-y=1-|x|,1-|x|≥0,所以它表示的图形是两条线段y=-x(-1≤x≤0)和y=x(0≤x≤1).如图:11.曲线x2+(y-1)2=4与直线y=k(x-2)+4有两个不同的交点,求k的范围,若有一个交点、无交点呢?【解析】由y得(1+k2)x2+2k(3-2k)x+(3-2k)2-4=0,Δ=4k2(3-2k)2-4(1+k2)[(3-2k)2-4]=48k-20.所以Δ>0,即k>512Δ=0,即k=512Δ<0,即k<512【拓展延长】曲线与直线交点个数的判别方法曲线与直线交点的个数就是曲线方程与直线方程联立方程组解的组数,而方程组解的组数可利用根的判别式进行推断.本题是推断直线和圆的交点问题,用的是代数法.也可用几何法,即通过圆心到直线的距离与半径的关系求出k的范围.有些题目,在推断交点个数时,也可用数形结合法.(30分钟50分)一、选择题(每小题4分,共16分)1.已知曲线ax2+by2=2经过点A(0,2)和B(1,1),则a,b的值分别为()A.12,32 B.3C.-32,32 D.1【解析】选B.由于点A(0,2)和B(1,1)都在曲线ax2+by2=2上,所以a·0+4b=2,a+b=2,2.(2022·临沂高二检测)方程x2|x|+A.一条直线B.两条平行线段C.一个正方形D.一个正方形(除去四个顶点)【解析】选D.由方程可知,方程表示的图形关于坐标轴和原点对称,且x≠0,y≠0,当x>0,y>0时,方程可化为x+y=1,表示第一象限内的一条线段(去掉两端点),因此原方程表示的图形是一个正方形(除去四个顶点).3.已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,则点M(4,-1)()A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上【解析】选C.将点M(4,-1)的坐标分别代入圆C及直线l的方程,均满足.4.(2022·成都高二检测)已知方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则a的取值范围是()A.a>1 B.0<a<1C.0<a<1或a>1 D.a∈【解题指南】分别作出y=a|x|和y=x+a所表示的曲线.再依据图象求a的取值范围.【解析】选A.由于a>0,所以方程y=a|x|和y=x+a(a>0)的图象大致如图,要使方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则要求y=a|x|在y轴右侧的斜率足够大,所以a>1.【变式训练】如图所示,定圆半径为a,圆心为(b,c),则直线ax+by+c=0与直线x-y+1=0的交点在()A.第一象限 B.其次象限C.第三象限 D.第四象限【解析】选C.由ax+by+c=0,x-y+1=0,由于a+b<0,a-c>0,b+c<0,所以x<0,y<0,所以交点在第三象限,选C.二、填空题(每小题5分,共10分)5.(2022·济宁高二检测)曲线y=|x-2|-2的图象与x轴所围成的三角形的面积是.【解析】当x-2<0时,原方程可化为y=-x;当x-2≥0时,原方程可化为y=x-4.故原方程表示两条共顶点的射线,易得顶点为B(2,-2),与x轴的交点为O(0,0),A(4,0),所以曲线y=|x-2|-2与x轴围成的三角形面积为S△AOB=12|OA|·|yB答案:46.(2022·石家庄高二检测)曲线y=-1-x2与曲线y+|ax|=0(a∈【解析】由y得-|ax|=-1-x2,即a2x2所以(a2+1)x2=1,解得x=1a2+1代入y=-|ax|,得y=-a2所以它们有2个交点.答案:2【一题多解】由y=-1-x2,得x2+y2由y+|ax|=0,得y=-|a||x|,表示过原点的两条射线,如图.所以由图象可知,它们有两个交点.答案:2三、解答题(每小题12分,共24分)7.已知点P(x0,y0)是曲线f(x,y)=0和曲线g(x,y)=0的交点,求证:点P在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【证明】由于P是曲线f(x,y)=0和曲线g(x,y)=0的交点,所以P在曲线f(x,y)=0上,即f(x0,y0)=0,P在曲线g(x,y)=0上,即g(x0,y0)=0,所以f(x0,y0)+λg(x0,y0)=0+λ0=0,故点P在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【拓展延长】证明曲线与方程关系的技巧解答本类问题的关键是正确理解并运用曲线的方程与方程的曲线的概念,明确两条原则,即若点的坐标适合方程,则该点必在方程的曲线上;若点在曲线上,则该点的坐标必适合曲线的方程.另外,要证明方程是曲线的方程,依据定义需完成两步:①曲线上任意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【2021届备考】2020全国名校化学试题分类解析汇编:H单元-水溶液中的离子平衡
- 四川省绵阳2024-2025学年高二上学期数学期末模拟试题(六)(含答案)
- 【同步课堂】2020年化学人教版选修5教案:2-2-芳香烃
- 2023年职工医保门诊报销新规定
- 上册《角的初步认识》课件设计
- 【备考专题】高考语文专题精讲与新题赏析-专题-语言基础和运用2020年新题赏析(下)-课后练习
- 【名师一号】2020-2021学年高中英语选修六-第五单元综合测评
- 【学练考】2021-2022新高考人民版历史必修二-专题测评六-罗斯福新政与当代资本主义
- 信管部报告:2023年数字化转型之路
- 2025年0088北京天河石科技有限责任公司
- 品质部规划方案
- JGJT157-2014 建筑轻质条板隔墙技术规程
- 2023-2024学年福建省泉州市惠安县八年级(上)学期期末数学试题(含解析)
- 乔木移栽、栽植施工技术方案及方法
- 电性测试报告
- 债权债务清收工作方案
- 鼓胀教学查房
- 空调更换施工方案
- 普通高中思想政治课程标准
- 毛泽东诗词作品欣赏
- 消化内科交班本PDCA
评论
0/150
提交评论