版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TheBusinessCaseforLC3
AGlobalSolutionforLow-Carbon,Low-CostCement
Report/December2024
AuthorsandAcknowledgments
Authors
ChandlerRandol
SwathiShanthaRaju,formerlyofRMIBenSkinner
JamesSun,formerlyofRMI
Authorslistedalphabetically.AllauthorsfromRMIunlessotherwisenoted.
Contacts
ChandlerRandol,chandler.randol@BenSkinner,bskinner@
CopyrightsandCitation
ChandlerRandol,BenSkinner,JamesSun,andSwathiShanthaRaju,TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement,RMI,2024,
/insight/the-business-case-for-lc3
.
RMIvaluescollaborationandaimstoacceleratetheenergytransitionthroughsharingknowledgeand
insights.Wethereforeallowinterestedpartiestoreference,share,andciteourworkthroughtheCreativeCommonsCCBY-SA4.0license.
/licenses/by-sa/4.0/
.
AllimagesusedarefromiSunlessotherwisenoted.
Acknowledgments
Fundingpartner:TheteamexpressesourheartfeltappreciationtotheClimateWorksFoundationforitssupportandpartnershipinfundingthiswork.
RMIcontributors:WethankAnnaGoldman(formerintern),HeatherHouse,andRadhikaLalit(formerlywithRMI)fortheircontributionstothisreport.
Externalcontributors/reviewers:WeextendourgratitudetoPeterDicksonfromCBIGhana,Dr.Karen
ScrivenerfromÉcolePolytechniqueFédéraledeLausanne,CraigHargisandKasFarsadfromFortera,AmithKalathingalandRemiBarbarulofromHolcim,FernandoMartirenafromUniversidadCentraldelasVillas,andYosraBrikifromVicatforgraciouslyofferingtheirinsightstothiswork.
Inclusiononthislistdoesnotindicateendorsementofthereport’sfindings.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/2
AboutRMI
RMIisanindependentnonprofit,foundedin1982asRockyMountainInstitute,thattransformsglobalenergysystemsthroughmarket-drivensolutionstoalignwitha1.5°Cfutureandsecureaclean,
prosperous,zero-carbonfutureforall.Weworkintheworld’smostcriticalgeographiesandengage
businesses,policymakers,communities,andNGOstoidentifyandscaleenergysysteminterventionsthatwillcutclimatepollutionatleast50percentby2030.RMIhasofficesinBasaltandBoulder,Colorado;NewYorkCity;Oakland,California;Washington,D.C.;Abuja,Nigeria;andBeijing.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/3
TableofContents
ExecutiveSummary 5
KeyStudyResults 5
KeyStrategicInsights 6
Introduction 7
CementandConcreteProduction 8
DecarbonizationPathways 9
StrategiesforReducingClinkerinCement 10
ClayCalcination 11
TheBusinessCaseforLC3inDierentMarkets 12
NorthAmerica 14
Europe 15
LatinAmerica 16
Africa 17
StudyApproach 19
Methodology 19
LC3CementPlantCaseStudiesandModelScenarios 19
Assumptions 20
Plant-SpecificConsiderations 20
ComparativeAnalysisofLC3andBenchmarkCements 20
ResultsoftheSevenCaseStudies 23
EconomicBenefitsofLC3forCementProducers 24
ClimateImpactofLC3 28
BarriersandChallenges 29
1.MaterialsSourcing 29
2.AdherencetoStandards 29
3.PhysicalProperties 32
4.CapitalExpenses 32
KeyAnalyticalFindings 33
ImplicationsofLC3ontheCementMarket,ActionsNeeded,
andWhatComesNext 34
Conclusion 36
Endnotes 37
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/4
ExecutiveSummary
Themomentisnowforlimestonecalcinedclaycement(LC3).Asthecementindustryseekstocutcostsanddecarbonize,LC3offersascalable,cost-effectivesolutionthatisprimedandready.Thisreportanalyzes
LC3’sfinancialandenvironmentalbenefits,ultimatelyshowingthatLC3isatransformativeopportunityforcementproducersworldwide.
TheanalysiscomparesthecostsofLC3,normalizedtoUSdollarsperton(US$/t),withlocalcement
benchmarksacrossfourregions:NorthAmerica,Europe,LatinAmerica,andAfrica.ModelingresultsofLC3andconventionalcementinvestmentsshowcapitalandoperatingexpensesacrosseachstep,includingkilnretrofits,energyuse,grinding,mixing,andmore.Keyfinancialmetrics—paybackperiod,internalrateof
return(IRR),andCO2emissionsavoided—provideaclearviewofLC3’seconomicpotential.ModelscenariosbuiltusingtheLC3toolfromUniversidadCentraldelasVillas,Cuba,exploreoptionsforproductionthroughintegratedplantsandgrindingstations,offeringarealisticpathtoindustry-wideadoption.
KeyStudyResults
LC3demonstratesacompellingroutetodecarbonizationwithstrongfinancialperformanceandsignificantemissionsreductions:
•OperationalCostSavings:LC3productioncanreduceoperatingexpensesbyupto33%.Lowercalcinationtemperaturesforclay,reducedfueluse,andtheabsenceoflimestonemasslossintheprocesscontributetothesesavings,especiallyinregionswherefuelcostsarehigh.
•RapidPaybackandHighReturns:LC3’slowerproductioncostsandemissionscreatefinancial
advantages,withpaybackperiodsasshortasafewmonthsinfavorableregions.Onthehigherend,paybackperiodscanextendupto10years,dependingonregionalfactorsandcapitalrequirements.IRRsareespeciallyhighinareaswithlowclaycostsandhighclinkerimportcosts,althoughlower
returnscanoccurinmarketswithhigherretrofitandtransportationexpenses.
•ResiliencetoTransportationCosts:Evenwithclaysourceslocatedupto200kmfromtheplant,LC3remainsmoreprofitablethanordinaryportlandcement(OPC)becausecalcinedclaysarefarcheaperthanclinker.Thisgeographicflexibilitysupportswidespreadadoptioninvariedmarkets.
•CO₂EmissionsAvoided:LC3avoidsemissionsupto32%comparedwithtraditionalcementblends,andover40%comparedwithOPC.Thisavoidanceisachievedthroughhighclinkerreplacement(upto50%)andcalcinedclay,whichemitssignificantlylesscarbonthanclinkerproduction.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/5
KeyStrategicInsights
LC3unlocksopportunitiesfornewtechnologiesandbusinessmodels,supportingashifttowardmoreadaptable,efficient,andsustainablecementproduction:
•ConvertingClinkerKilns:AsthemarketadaptstolowerclinkerratioswithblendslikeLC3,reducedclinkerdemandmayacceleratetheclosureofinefficientclinkerplants;however,companiescan
proactivelyplantoconvertthesekilnsforclaycalcination.
•ElectrifyingClayCalcinationKilns:Calciningclayrequireslowertemperaturesthanclinkerproduction,potentiallyenablingtheuseofelectriccalcinerspoweredbyrenewableenergy.
•NewBusinessOpportunities:Calcinedclayscanpromotenewbusinessmodelstoemergesuchasmodularkilnscolocatedonclaymines,potentiallyopeningthelow-carboncementmarkettonew,smaller-scaleproducers.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/6
Introduction
LC3isalow-carboncementblendthatcombinescalcinedclay(kaoliniteclayheatedatlower
temperatures)andlimestonetosignificantlyreducetheneedfortraditionalclinker,themostcarbon-
intensivecomponentofcement.Byreplacingupto50%ofclinkerwiththesematerials,LC3dramaticallylowerstheenergyconsumptionandCO2emissionsassociatedwithcementproduction.TheemissionsreductionpotentialofLC3issubstantial,withestimatessuggestinga30%–40%reductioningreenhouse
gas(GHG)emissionscomparedwithordinaryportlandcement(OPC)canbeachievedanddeployedtoday.1
Thisreductionisvitalbecausethecementindustryisresponsibleforapproximately8%ofglobalGHG
emissions,makingdecarbonizationeffortsinthissectorcrucialformeetingglobalclimatetargets.2Cementistheprimaryingredientinconcrete,whichistheworld’smostwidelyusedconstructionmaterialdueto
itsstrength,durability,andcost-effectiveness.Astheworldcontinuestourbanize—particularlyinrapidlydevelopingregionssuchasAsia,Africa,andLatinAmerica—thedemandforcementisexpectedtogrow
significantly.Accordingtoestimates,by2050,morethan70%oftheglobalpopulationwillliveincities,anddevelopingnationswillneedtobuildvastamountsofinfrastructuretoaccommodatethisshift.3
TheenvironmentalimpactofthisconstructionboomcouldbeenormousiftraditionalcementcontinuestodominatethemarketbecauseitsproductionishighlyenergyintensiveandemitslargeamountsofCO2emissionsduetothecalcinationoflimestone.Thismakesthedecarbonizationofcementproductiona
criticalclimateactionthatisessentialtomeetingthegrowinginfrastructureneedsofanurbanizingworldwithoutexacerbatingclimatechange.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/7
Thefindingsshowthatreplacing
OPCwithLC3
inconcrete
canreduceCO2
emissionsover40%whilemaintainingorimproving
performance.Theplantanalysis
alsorevealsup
to30%reductioninoperational
costsonaveragecomparedwithOPCforthe
modeledscenarios.
LC3offersascalable,profitablealternativetoOPCthatcanmeetincreasingcementdemandwhilereducingthesector’scontributiontoglobalemissions,thusplayingapivotalroleinbuildingamoresustainable,resilientfutureforbothdeveloping
anddevelopedregions.TheabilitytoreduceemissionswithoutmajorchangestoexistingproductioninfrastructuremakesLC3anidealsolutionforwidespreadadoption,particularlyinregionswithhighgrowthpotential.
NewRMIanalysis,showcasedinthisreport,exploresthepotentialofLC3to
decarbonizethecementindustry,drawingoncasestudiesandinterviewswith
earlyadopterstoassessthefinancialviabilityandemissionsreductionsacross
sevencementplantscenariosinNorthAmerica,Europe,LatinAmerica,and
Africa.ThefindingsshowthatreplacingOPCwithLC3inconcretecanreduce
CO2emissionsover40%whilemaintainingorimprovingperformance.The
plantanalysisalsorevealsupto30%reductioninoperationalcostsonaverage
comparedwithOPCforthemodeledscenarios,withpaybackperiodsranging
fromlessthan1yearto10yearswithoutacarbonprice,andfromlessthan1yearto4yearswithacarbonprice.
ThereportalsobeginstoexamineLC3’sbroaderpotentialimpactontheindustryanditsfuturetrajectory.Withcompellingevidenceofsignificantcostsavings,
swiftpaybackperiods,andsubstantialemissionsreductions,thisreportmakesaclearbusinesscaseforLC3asacriticalsolutionforthecementindustry.Toremaincompetitiveandleadinthetransitiontosustainableconstruction,nowisthetimeforstakeholderstoinvestinandscaleLC3.
CementandConcreteProduction
TheindustrystandardforcementisOPC,whichismadefromtwoinputs:clinkerandgypsum.Attheheartofthisprocessistheproductionofclinker,thekey
ingredientinOPC,whichisformedbyheatinglimestone(calciumcarbonate)tohightemperaturesinakiln.Thisheating,orcalcination,causesthelimestonetobreakdownintolime(calciumoxide)andreleasessignificantamountsofCO2intheprocess.Theclinkeristhencooled,ground,andmixedwithgypsumto
producecement.
AsshowninExhibit1,theclinkerproductionphaseisresponsibleforaround
85%–90%ofcement’stotalCO2equivalent(CO2e)emissions.4Dependingonplantageandefficiency,roughly35%–40%ofclinkerproductionemissionscomefromtheenergyrequiredtoheatthekilns,traditionallysourcedfromfossilfuelssuch
ascoalandpetroleumcoke(petcoke),andtheremaining60%,knownasprocessemissions,derivefromtheconversionoflimestoneintolime.5Theremaining10%–15%ofcement’stotalCO2eemissionscomefromtheenergyrequiredtoheatthekilns,traditionallysourcedfromfossilfuelslikecoalandpetcoke,forphasesafterclinkerproduction.6
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/8
Exhibit1Emissionsfromthefullconcreteandcementvaluechain
PercentageoftotalCO2emissionsoftheconcreteandcementsector
Valuechainincludedinanalysis(Scope1and2)ProcessemissionsEnergyemissions
Clinker
Construction
Concrete
Cement
Rawmaterials
Recarbonation
5%1%
5%
–10%
35%
53%
1%
Productioncycle
Ready-mix
Rawmill
Natural
recarbonation
Rawmaterialextraction
Cyclone
preheater
Application
Crusher
Rotarykiln
Logistics
Blendingbed
Clinkerstorage
Bags
andmixing
Rawmaterial
extraction
andpreparation
Cementgrinding
ConcreteConstructionNatural
Clinkerproduction
recarbonation
Cementmill
Note:ThisillustrationcoversScope1and2emissionsandincludestotalrawmaterialextraction.Otherconstructionmaterialsarenotconsideredinthisanalysis.RMIGraphic.Source:MissionPossiblePartnership,CementandConcreteSectorTransitionStrategy
DecarbonizationPathways
Totackletheseemissions,severalkeydecarbonizationpathwayshavebeenidentified:reducingthe
clinkerfactor,improvingfuelefficiency,developingalternativebinders,andimplementingcarboncapture,utilization,andstorage(CCUS).Whileeachofthesestrategiesoffersuniqueopportunitiestocutemissionsatdifferentstagesofthecement-makingprocess,thisreportfocusesonhigh-impactpathwaystoreduceclinkerincement.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/9
StrategiesforReducingClinkerinCement
Clinkerproductionisthemostcarbon-intensivestepincementmanufacturing;thus,reducingtheratioofclinkerincementcanhaveamajorimpactonoverallemissions.OneofthemosteffectivestrategiesforreducingCO2emissionsincementproductionisloweringtheclinkerfactorbyusingblendedcements.Loweringtheclinkercontentincementproductioncanalsobeimplementedinthenearterm,whereasdecarbonizationstrategiessuchasCCUSoralternativebinderswillbecomeavailableinthemedium-to-longterm.
Blendedcementsareproducedbypartiallysubstitutingclinkerwithsupplementarycementitiousmaterials(SCMs),whichcontributetothecement’sfinalpropertieswhilesignificantlyreducingtheemissions
associatedwithclinkerproduction.SCMscanreplaceasubstantialportionofclinker,offeringacriticalpathwayforemissionsreductionsbyleveragingmaterialswithlowercarbonfootprints.Moreover,mostSCMscanoffersignificantcostsavingscomparedwithclinker,makingtheiruseanattractiveoptionforreducingbothemissionsandproductioncosts.7
TraditionalSCMs
SeveraltraditionalSCMshavebeenusedfordecadestocreateblendedcements:
•FlyAsh:Aby-productofcoalcombustioninpowerplants,flyashhasbeenwidelyusedasanSCMduetoitspozzolanicproperties,whichhelpimprovethestrengthanddurabilityofconcrete.Flyashcanreplaceupto30%–35%ofclinkerincement.8However,itsavailabilityisdecliningduetotheglobal
phaseoutofcoalpowerplantsandconcernsexistaboutitssustainabilityasafossil-derivedmaterial.
•GroundGranulatedBlastFurnaceSlag(GGBFS):AnothercommonSCMisGGBFS,aby-productof
thesteelmakingprocess.Ithasthepotentialtoreplace45%–95%ofclinker,makingitoneofthemosteffectiveclinkersubstitutesintermsofemissionsreduction.9However,thesupplyofGGBFSislinkedtotraditionalsteelmanufacturing,leadingtoconcernsabouttheavailabilityandstabilityofGGBFSasalong-termsolutionasthesteelsectordecarbonizes.Additionally,itcanbemoreexpensivethanotherSCMsduetoitsprocessingrequirementsandlimitedavailability.
•Limestone:Limestone,whenfinelyground,canbeusedasanSCMinsmallquantities(5%–15%)toreducetheclinkercontent.10Althoughitdoesnothavethesamepozzolanicpropertiesasflyashorslag,itsabundanceandrelativelylowprocessingcostsmakeitanattractiveoption.However,thesubstitutionrangeforlimestoneisrelativelylow.
EmergingSCMs
AsthesupplyoftraditionalSCMsfacesconstraints,theindustryisincreasinglylookingtoemergingSCMssuchascalcinedclaysandnaturalpozzolans.
•CalcinedClays:Calcinedclays,especiallywhencombinedwithlimestone,offerahighlyscalable
andimpactfulsolution.LC3canreplace30%–40%ofclinker,makingitasignificantcontributortoemissionsreductions.11LC3isparticularlyattractivebecausebothlimestoneandclayareabundantrawmaterials,whichmeansthistechnologyhasthepotentialtobewidelyadoptedacrossdiversegeographies.12Calciningclaysrequireslowertemperaturesthanclinker,reducingtheoverallenergydemandandassociatedproductionemissions.13
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/10
•NaturalPozzolans:Naturalpozzolans,suchasvolcanicashandothersiliceousmaterials,canreplace30%–40%ofclinker.14Likecalcinedclays,theyhavebeenusedhistoricallyinconcreteproductionandareincreasinglybeingexploredasasustainableSCM.However,theavailabilityofqualitypozzolansislimitedinmanygeographies.
OtherSCMs
ManyinnovatorsareexploringsyntheticandengineeredSCMstofurtherreducetheclinkerfactor,andevenusingSCMsasamechanismtostorecarbon.15Althoughtheyholdsignificantpotentialtofurtherreduce
clinkerusageandemissions,theseSCMsfacechallengesrelatedtotechnologyreadiness,cost,market
adoptionandscalability,andlimitedreal-worldapplication.Theirfutureroleindecarbonizingcementwilldependonovercomingthesebarriersandprovingtheireffectivenessinlarge-scaleuse.
ClayCalcination
Twoprimaryequipmentoptionsexistforthecalcinationofclay:theflashcalcinerandtherotarykiln(seeExhibit2).Thesesystems,alreadyavailableintoday’smarket,catertodifferentproductioncontexts.Theflashcalcineroptionrequiressmallergranulatedclay,whereastherotarykilnapproach,atechnology
alreadyusedatcementplantsfortheclinkerizationprocess,canaccommodatealargergrainsizeand
offersthepotentialtorepurposeexistingclinkerkilns.Ultimately,thenecessaryadjustmentsandadditionsforincorporatingcalcinedclaydependonaplant’suniqueinfrastructureandequipment.
Exhibit2DepictionofLC3productionprocess
ProcessemissionsEnergyemissions
Grindingunit
Claycalcination
Grindingmill
Homogenizedclayfeedstock
Calcinedclay
CO₂
Flashcalciner/
rotarykiln
700°C–800°C
LimestoneGypsum
Clinkerproduction
CO₂
Cyclonepreheater
RawmaterialCrusher
extraction
BlendingRaw
bedmill
CO₂CO₂
RotarykilnClinker
RMIGraphic.Source:RMIanalysis
1,450°Cstorage
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement
LC3
concrete
/11
TheBusinessCaseforLC3
inDifferentMarkets
Asthecementindustryexploresvariousdecarbonizationpathways,LC3standsoutasakeysolutionthatalignswiththeindustry’simmediateandlong-termgoals.Amongthestrategiesaimedatreducingclinkercontent,LC3offerssignificantadvantagesintermsofscalabilityandeaseofintegration.UnlikeotherSCMs,whichfacesupplyconstraints,LC3reliesonabundantrawmaterials—limestoneandclay.ThisscalabilityandaccessibilitygiveLC3aclearbusinessadvantageforbroadimplementation,particularlyinregions
wherelimitedlimestonedepositsdriveupclinkerimportcosts,suchasAfrica.16ByadoptingLC3,these
regionscouldsignificantlyreducecostswhilealsoachievingsubstantialenvironmentalbenefits,makingitafinanciallyandenvironmentallysoundinvestment.
LC3israpidlybecomingmarketreadyglobally,withColombiashowcasingthemostextensiveuseduetoitsadoptionbyColombiancementproducerArgosCementos.LC3hasbeenappliedinhigh-risebuildings,highways,andtunnels,demonstratingitsviabilityinlarge-scaleinfrastructure.Full-scaleproductionis
underwayinahandfulofcementplants(seeExhibit3),withadditionalprojectsrecentlyannouncedintheUnitedStates,supportedbyDepartmentofEnergy(DOE)funding.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/12
Exhibit3FeaturesoffourcementcompaniescurrentlyproducingorplanningtoproduceLC3andcalcinedclayblends
Plant
Location
Startof
Operation/Production
LC3orOtherCCB*
KeyFeatures
CBI
Ghana
Tema,Ghana
2025
LC3
•ExpansionofanexistingOPCplant
•Cementblendswith60%–70%clinkercontent
•30%–40%CO2emissionsreductionperton
Holcim
Macuspana–
Tabasco,Mexico
2023
LC3
•Cementblendwith50%clinkercontent
•50%CO2emissionsreductionincombinationwithalternativefuelsandwasteheatrecovery
Saint-Pierre-la-Cour,France
2023
CCB
•50%CO2emissionsreductionincombinationwithalternativefuelsandwasteheatrecovery
LaMalle,France
2021
CCB
•FirstcalcinedclaycementlineinFrance
•30%CO2emissionsreductionincombinationwithalternativefuelsandwasteheatrecovery
Fortera
Redding,CA,US
2023
CCB
•Reactivecalciumcarbonate(vaterite)canbeusedtoformCCB:45%clinker,5%gypsum,25%vaterite,25%calcinedclay
•36%CO2emissionsreduction
•ImprovedworkabilityversuscomparableCCBusingintergroundlimestone
Vicat
Sobradinho,Brazil
2009
CCB
•Rotarykilnusedforcalcination
•Durabilityfeaturessuchasresistancetochlorideingressandalkalisilicareaction
•Improvedearly-agestrength
•16%CO2emissionsintensityreduction
Xeuilley,France
2024
LC3
•Flashcalcinationtechnology
•SupportedbygrantsfromADEME,theFrenchnationalagencyfortheenvironment,andtheEUbecauseofitsenvironmentalbenefits
*Note:CCBiscalcinedclayblend.RMIGraphic.Source:RMIinterviews
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/13
Anoverviewoftheregulatoryenvironmentsforeachregionisprovidedbelow,settingthestageforamoredetailedcasestudyanalysisofNorthAmerica,Europe,LatinAmerica,andAfrica,whichfollowslaterinthereport.
NorthAmerica
PrescriptivestandardsaredominantinNorthAmerica,butrecentDOEfundingisboostingmomentumforLC3intheUnitedStates.
NorthAmericaoperatesunderhighlyprescriptivestandardsthatposechallengestotheadoptionof
innovativematerialslikeLC3.TheAmericanConcreteInstitute(ACI),whichsetskeyconcretedesignand
constructionstandards,theInternationalCodeCouncil’s(ICC)InternationalBuildingCode,whichgovernsconstructionsafetyregulations,andASTMInternational,whichdevelopsandpublisheswidelyrecognizedconsensus-basedstandardsformaterials,products,systems,andservices,playcrucialrolesinshapingthecementandconcretemarkets.Whilethesestandardsensurequalityandsafety,theyalsocreatebarrierstocommercializationofmoresustainabletechnologieslikeLC3.
OnemajorspecificationgoverningblendedcementisASTMC595,whichdefinesrequirementsforvarioustypesofblendedhydrauliccementandlimitsclinkerreplacement.Incontrast,ASTMC1157representsashifttowardperformance-basedstandards,offeringmoreflexibilityformaterialsandchemicaladditionstoclinker.Forinstance,ASTMC1157allowscementproducerstotargetspecificneeds,suchashighearlystrengthorhighsulfateresistance,withoutmandatingmaterialsormixproportions.ASTMC1157,aroundsince1992,isstartingtoseemoreadoptionintheUSconstructionindustrywithsophisticatedpurchaserssuchastechnologycompaniesbuildingoutdatacenters.However,adoptioncouldbemorewidespreadasmanyengineers,contractors,andregulatorscontinuetorelyontraditionalprescriptivestandards.
Despitetheselimitations,LC3isgainingtractionintheUnitedStates.InMarch2024,theDOE’sIndustrialDemonstrationsProgramsignaledstrongsupportforLC3whenawarding$1.5billiontosixcement
decarbonizationprojects,threeofwhichfocusonproducingcalcinedclays,akeycomponentofLC3.17
Drivenbyfederalandstate“buyclean”policiesandgrowingcorporatecommitments,end-usersare
increasinglyseekinglower-carbonoptionsthatcanbespecifiedandimplementedtoday,positioningLC3asatimelysolution.18
Forteraproducesareactiveformofcalciumcarbonatecalledvaterite,whichcanbeblended
withcalcinedclayinlieuoflimestone,achievingamixturethatreplaces50%–70%ofclinker.
Thecompany’sReAct™(45%clinker,5%gypsum,25%vaterite,and25%calcinedclay)reduces
emissionsby36%comparedwithOPC.ForterausesitsReCarb®processtoproducevaterite
byrecombiningCO2emissionsfromthekilnwithcalciumoxide,resultinginahighlyreactive,
sphericalmineralthatcanreducewaterdemand,increaseearlystrength,andimproveworkabilitycomparedwithcalcinedclayblendsmadeusinggroundlimestone.Thecompanyrecently
launchedasmallcommercial-scaleplanttoproducevateritewithinanexistingcementplantinRedding,California.Aswithmanynewcementtechnologies,someofthepotentialbenefitsofthismaterial,andtheeconomicsandpracticalitiesofproducingitatscale,arenotfullyproveninreal-world
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高速公路ETC系统升级改造合同
- 2025年度智能物流平台合作返点合同范本4篇
- 2025年度现代农业设施承揽合同补充协议4篇
- 2025年度油气储罐安全检测与改造合同4篇
- 2025年10kv线路施工绿色环保与节能减排合同3篇
- 2025年度智能车位租赁合同转让协议书(全新版)4篇
- 2024年车辆购销合同示范文本
- 2025年度智能储煤场租赁管理服务合同4篇
- 2024矿用设备租赁合同
- 2025年度城市更新改造项目承包合同签约与历史文化保护协议(2024版)3篇
- 2024年海口市选调生考试(行政职业能力测验)综合能力测试题及答案1套
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
- 视网膜中央静脉阻塞护理查房课件
评论
0/150
提交评论