【优化方案】2021高考数学总复习(湖北理科)课后达标检测:第7章-第2课时_第1页
【优化方案】2021高考数学总复习(湖北理科)课后达标检测:第7章-第2课时_第2页
【优化方案】2021高考数学总复习(湖北理科)课后达标检测:第7章-第2课时_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

[基础达标]一、选择题1.(2022·吉林长春市调研)一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()A.eq\f(3,2)π B.2πC.3π D.4π解析:选A.依题意知,该几何体是一个底面半径为eq\f(1,2)、高为1的圆柱,其表面积为2π(eq\f(1,2))2+2π×eq\f(1,2)×1=eq\f(3,2)π.2.一个正三棱柱的侧棱长和底面边长相等,体积为2eq\r(3),它的三视图中的俯视图如图所示,侧视图是一个矩形,则这个矩形的面积是()A.4 B.2eq\r(3)C.2D.eq\r(3)解析:选B.设底面边长为x,则V=eq\f(\r(3),4)x3=2eq\r(3),∴x=2.由题意知这个正三棱柱的侧视图为长为2,宽为eq\r(3)的矩形,其面积为2eq\r(3).3.(2022·武汉市部分学校调研测试)如图是某几何体的三视图,则该几何体的体积为()A.16 B.24C.34 D.48解析:选A.由三视图可知,该几何体是一个四棱锥,其底面是长为6,宽为2的矩形,高为4,故该几何体的体积是V=eq\f(1,3)×6×2×4=16.4.(2022·广东广州模拟)设一个球的表面积为S1,它的内接正方体的表面积为S2,则eq\f(S1,S2)的值等于()A.eq\f(2,π) B.eq\f(6,π)C.eq\f(π,6) D.eq\f(π,2)解析:选D.设球的半径为R,其内接正方体的棱长为a,则易知R2=eq\f(3,4)a2,即a=eq\f(2\r(3),3)R,则eq\f(S1,S2)=eq\f(4πR2,6×\b\lc\(\rc\)(\a\vs4\al\co1(\f(2\r(3),3)R))2)=eq\f(π,2).5.(2021·高考浙江卷)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3解析:选B.此几何体为一个长方体ABCD­A1B1C1D1被截去了一个三棱锥A­DEF,如图所示,其中这个长方体的长、宽、高分别为6、3、6,故其体积为6×3×6=108(cm3).三棱锥的三条棱AE、AF、AD的长分别为4、4、3,故其体积为eq\f(1,3)×(eq\f(1,2)×4×3)×4=8(cm3),所以所求几何体的体积为108-8=100(cm3).二、填空题6.(2022·武汉市部分学校高三调研测试)已知圆柱M的底面半径与球O的半径相同,且圆柱M与球O的表面积相等,则它们的体积之比V圆柱∶V球=________.解析:由题意,2πr2+2πrh=4πr2,则r=h.故V圆柱∶V球=πr2h∶eq\f(4,3)πr3=eq\f(3,4).答案:eq\f(3,4)7.(2022·武汉市部分学校高三联考)若某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是________cm2.解析:由三视图可知,原几何体是一个半圆锥,其底面半圆的半径为2,高为3,故此几何体的表面积是S=eq\f(1,2)π×22+eq\f(1,2)×4×3+eq\f(1,2)π×2×eq\r(32+22)=2π+eq\r(13)π+6.答案:2π+eq\r(13)π+68.(2022·湖北武汉市武昌区联考)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析:由三视图知该几何体为上底直径为2,下底直径为6,高为2eq\r(3)的圆台,则几何体的表面积S=π×1+π×9+eq\f(1,2)×4×(2π+6π)=26π.答案:26π三、解答题9.(2022·浙江杭州模拟)如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2eq\r(2),AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.解:由已知得:CE=2,DE=2,CB=5,S表面=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×2eq\r(2)=(60+4eq\r(2))π,V=V圆台-V圆锥=eq\f(1,3)(π·22+π·52+eq\r(22·52π2))×4-eq\f(1,3)π×22×2=eq\f(148,3)π.10.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为eq\r(3)、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为eq\r(3).所以V=1×1×eq\r(3)=eq\r(3).(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1×eq\r(3)+1×2)=6+2eq\r(3).[力气提升]一、选择题1.(2022·宜昌市一中高三模拟)一个底面为正三角形且侧棱垂直于底面的三棱柱内接于半径为eq\r(3)的球,则该棱柱体积的最大值为()A.eq\f(2\r(3),3) B.3eq\r(3)C.eq\f(3\r(3),2) D.6eq\r(3)解析:选B.设该三棱柱的底面边长为a,高为h,则底面正三角形的外接圆半径是eq\f(a,2sin60°)=eq\f(a,\r(3)),依题意有eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,\r(3))))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(h,2)))2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\r(3)))2,即eq\f(a2,9)+eq\f(h2,12)=1,1=eq\f(a2,18)+eq\f(a2,18)+eq\f(h2,12)≥3eq\r(3,\f(a2,18)×\f(a2,18)×\f(h2,12)),当且仅当eq\f(a2,18)=eq\f(h2,12),即a=eq\r(6),h=2时取等号,此时a2h取得最大值,因此该棱柱的体积eq\f(\r(3),4)a2h的最大值是eq\f(\r(3),4)×6×2=3eq\r(3).2.(2022·高考湖北卷)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈eq\r(3,\f(16,9)V).人们还用过一些类似的近似公式.依据π=3.14159…推断,下列近似公式中最精确的一个是()A.d≈eq\r(3,\f(16,9)V) B.d≈eq\r(3,2V)C.d≈eq\r(3,\f(300,157)V) D.d≈eq\r(3,\f(21,11)V)解析:选D.由球体积公式得d=eq\r(3,\f(6,π)V)≈eq\r(3,1.90986093V).由于eq\f(16,9)≈1.77777778,eq\f(300,157)≈1.91082803,eq\f(21,11)≈1.90909091,而eq\f(21,11)最接近于eq\f(6,π),所以选D.二、填空题3.(2021·高考课标全国卷Ⅰ)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为________.解析:如图,设球O的半径为R,则由AH∶HB=1∶2得HA=eq\f(1,3)·2R=eq\f(2,3)R,∴OH=eq\f(R,3).∵截面面积为π=π·(HM)2,∴HM=1.在Rt△HMO中,OM2=OH2+HM2,∴R2=eq\f(1,9)R2+HM2=eq\f(1,9)R2+1,∴R=eq\f(3\r(2),4).∴S球=4πR2=4π·(eq\f(3\r(2),4))2=eq\f(9,2)π.答案:eq\f(9,2)π4.(2021·高考湖北卷)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:圆台的轴截面是下底长为12寸,上底长为28寸,高为18寸的等腰梯形,雨水线恰为中位线,故雨水线直径是20寸,∴降水量为eq\f(\f(π,3)102+10×6+62×9,π×142)=3(寸).答案:3三、解答题5.一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积;(2)证明:A1C⊥平面AB1C1.解:(1)几何体的直观图如图所示,四边形BB1C1C是矩形,BB1=CC1=eq\r(3),BC=B1C1=1,四边形AA1C1C是边长为eq\r(3)的正方形,且平面AA1C1C垂直于底面BB1C1C,故该几何体是直三棱柱,其体积V=S△ABC·BB1=eq\f(1,2)×1×eq\r(3)×eq\r(3)=eq\f(3,2).(2)证明:由(1)知平面AA1C1C⊥平面BB1C1C且B1C1⊥CC1,所以B1C1⊥平面ACC1A1.所以B1C1⊥A1C.由于四边形ACC1A1为正方形,所以A1C⊥AC1.而B1C1∩AC1=C1,所以A1C⊥平面AB1C1.6.(选做题)(2021·高考湖北卷)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发觉矿藏,再连续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1,同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3,过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1­A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(1)证明:中截面DEFG是梯形;(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1­A2B2C2的体积V)时,可用近似公式V估=S中·h来估算.已知V=eq\f(1,3)(d1+d2+d3)S,试推断V估与V的大小关系,并加以证明.解:(1)证明:依题意A1A2⊥平面ABC,B1B2⊥平面ABC,C1C2⊥平面ABC,所以A1A2∥B1B2∥C1C2.又A1A2=d1,B1B2=d2,C1C2=d3,且d1<d2<d3,所以四边形A1A2B2B1、A1A2C2C1均是梯形.由AA2∥平面MEFN,AA2⊂平面AA2B2B,且平面AA2B2B∩平面MEFN=ME,可得AA2∥ME,即A1A2∥DE.同理可证A1A2∥FG,所以DE∥FG.又点M、N分别为AB、AC的中点,则点D、E、F、G分别为A1B1、A2B2、A2C2、A1C1的中点,即DE、FG分别为梯形A1A2B2B1、A1A2C2C1的中位线,因此DE=eq\f(1,2)(A1A2+B1B2)=eq\f(1,2)(d1+d2),FG=eq\f(1,2)(A1A2+C1C2)=eq\f(1,2)(d1+d3),而d1<d2<d3,故DE<FG,所以中截面DEFG是梯形.(2)V估<V.证明如下:由A1A2⊥平面ABC,MN⊂平面ABC,可得A1A2⊥MN.而EM∥A1A2,所以EM⊥MN,同理可得FN⊥MN.由MN是△ABC的中位线,可得MN=eq\f(1,2)BC=eq\f(1,2)a,即为梯形DEFG的高,因此S中=S梯形DEFG=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论