下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(五)一、选择题1.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()(A)(-∞,0],(-∞,1] (B)(-∞,0],[1,+∞)(C)[0,+∞),(-∞,1] (D)[0,+∞),[1,+∞)2.给定函数①y=②③y=|x-1|,④y=2x+1,其中在区间(0,1)上是单调递减的函数的序号是()(A)①②(B)②③(C)③④(D)①④3.函数f(x)=1-QUOTE()(A)在(-1,+∞)上单调递增(B)在(1,+∞)上单调递增(C)在(-1,+∞)上单调递减(D)在(1,+∞)上单调递减4.(2021·佛山模拟)若函数y=ax与y=在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是()(A)增函数 (B)减函数(C)先增后减 (D)先减后增5.(2021·泉州模拟)已知函数f(x+2)是偶函数,当x2>x1>2时,恒成立,设a=f(-1),b=f(3),c=f(6),则a,b,c的大小关系为()(A)b<a<c(B)b<c<a(C)a<b<c(D)c<b<a6.已知函数f(x)=QUOTE单调递减,那么实数a的取值范围是()(A)(0,1) (B)(0,QUOTE) (C)[QUOTE,QUOTE) (D)[QUOTE,1)7.定义在R上的函数f(x)在区间(-∞,2)上是增函数,且f(x+2)的图象关于x=0对称,则()(A)f(-1)<f(3) (B)f(0)>f(3)(C)f(-1)=f(3) (D)f(0)=f(3)8.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x<0时,f(x)>0,则函数f(x)在[a,b]上有()(A)最小值f(a) (B)最大值f(b)(C)最小值f(b) (D)最大值f(QUOTE)9.(2021·天津模拟)设函数f(x)=QUOTE若f(x)的值域为R,则常数a的取值范围是()(A)(-∞,-1]∪[2,+∞)(B)[-1,2](C)(-∞,-2]∪[1,+∞)(D)[-2,1]10.(力气挑战题)已知函数f(x)是定义在(0,+∞)上的单调函数,若对任意x∈(0,+∞),都有f(f(x)-QUOTE)=2,则f(QUOTE)的值是()(A)5 (B)6 (C)7 (D)8二、填空题11.函数y=-(x-3)|x|的递增区间是.12.(2021·漳州模拟)对于任意实数a,b,定义min{a,b}=QUOTE设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是.13.设函数f(x)=QUOTE的最小值为2,则实数a的取值范围是.14.(2021·成都模拟)已知函数f(x)=|x-2|-|x-5|,则f(x)的取值范围是.三、解答题15.已知f(x)=QUOTE(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)上单调递增.(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.答案解析1.【解析】选C.f(x)=|x|=QUOTE∴函数f(x)的递增区间是[0,+∞).g(x)=x(2-x)=-x2+2x=-(x-1)2+1,对称轴是直线x=1,a=-1<0.∴函数g(x)的单调递增区间为(-∞,1].故选C.2.【解析】选B.①y=在x>0时是增函数,②在x>-1时是减函数.③y=|x-1|在x∈(0,1)时是减函数.④y=2x+1在x∈R上是增函数.3.【解析】选B.f(x)可由沿x轴向右平移一个单位,再向上平移一个单位得到,如图.由图象可知函数f(x)在(1,+∞)上单调递增.4.【解析】选B.∵y=ax与y=在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴x=<0,∴y=ax2+bx在(0,+∞)上为减函数.5.【解析】选A.由f(x+2)是偶函数,可得函数f(x)图象关于直线x=2对称,又x2>x1>2时,得f(x)在(2,+∞)上是增函数.a=f(-1)=f(5),且f(3)<f(5)<f(6),即b<a<c,故选A.6.【解析】选C.由题意知需满足:QUOTE7.【解析】选A.由于f(x+2)的图象关于x=0对称,所以f(x)的图象关于x=2对称,又f(x)在区间(-∞,2)上是增函数,则其在(2,+∞)上为减函数,作出其图象大致外形如图所示.由图象知,f(-1)<f(3),故选A.8.【思路点拨】先探究f(x)在[a,b]上的单调性,再推断最值状况.【解析】选C.设x1<x2,由已知得f(x1)=f((x1-x2)+x2)=f(x1-x2)+f(x2).又x1-x2<0,∴f(x1-x2)>0,∴f(x1)>f(x2),即f(x)在R上为减函数.∴f(x)在[a,b]上亦为减函数.∴f(x)min=f(b),f(x)max=f(a),故选C.9.【解析】选A.当x>2时,f(x)>4+a,当x≤2时,f(x)≤2+a2,由题意知2+a2≥4+a,解得a≥2或a≤-1.10.【思路点拨】解答本题的关键是从条件中得出f(x)-QUOTE是一个常数,从而令f(x)=QUOTE+k(k为常数),则f(x)可求.【解析】选B.由题意知f(x)-QUOTE为常数,令f(x)-QUOTE=k(k为常数),则f(x)=QUOTE+k,由f(f(x)-QUOTE)=2得f(k)=2.又f(k)=QUOTE+k=2,∴k=1,即f(x)=QUOTE+1,∴f(QUOTE)=6.11.【解析】y=-(x-3)|x|=QUOTE作出该函数的图象,观看图象知递增区间为[0,QUOTE].答案:[0,QUOTE]12.【解析】依题意,h(x)=QUOTE当0<x≤2时,h(x)=log2x是增函数;当x>2时,h(x)=3-x是减函数,∴h(x)=min{f(x),g(x)}在x=2时,取得最大值h(2)=1.答案:113.【解析】当x≥1时,f(x)≥2,当x<1时,f(x)>a-1,由题意知,a-1≥2,∴a≥3.答案:[3,+∞)14.【解析】f(x)=|x-2|-|x-5|=QUOTE当2≤x≤5时,-3≤f(x)≤3.综上知-3≤f(x)≤3.答案:[-3,3]15.【解析】(1)任设x1<x2<-2,则f(x1)-f(x2)==.∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)==.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.综上所述知a的取值范围是(0,1].【变式备选】已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-QUOTE.(1)求证:f(x)在R上是减函数.(2)求f(x)在[-3,3]上的最大值和最小值.【解析】(1)方法一:∵函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),∴令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).又∵x>0时,f(x)<0,而x1-x2>0,∴f(x1-x2)<0,即f(x1)<f(x2).因此f(x)在R上是减函数.方法二:设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2).又∵x>0时,f(x)<0,而x1-x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版股份质押回购交易合同3篇
- 二零二四二手钢铁材料购买与运输合同3篇
- 二零二五版打印机销售渠道资源整合与共享合同3篇
- 年度聚碳酸酯(PC)及合金市场分析及竞争策略分析报告
- 二零二四年工业自动化设备安装与生产流程优化合同3篇
- 2024-2025学年新教材高中数学第十章复数10.2.2第1课时复数的乘法教师用书教案新人教B版必修第四册
- 二零二五年文秘与档案管理劳动合同2篇
- 二零二五年度网络安全风险评估与防护合同3篇
- 2025年星酒店投资技术服务与酒店客房智能化改造合同3篇
- 二零二五年度特色餐饮店承包经营权转让合同3篇
- 餐车移动食材配送方案
- 项目工程师年终总结课件
- 一年级口算练习题大全(可直接打印A4)
- 电动车棚消防应急预案
- 人力资源战略规划地图
- 2023年河南公务员考试申论试题(县级卷)
- DB35T 2198-2024 工业园区低零碳创建评估准则 福建省市监局
- 不为积习所蔽勿为时尚所惑-如何做一个 好老师 高中主题班会课件
- 托育服务中心项目可行性研究报告
- 中式烹调师四级理论考试题库(重点500题)
- 碳排放管理员 (碳排放核查员)技能考核内容结构表四级、技能考核要素细目表四级
评论
0/150
提交评论