版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年粤教沪科版九年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、如图,在菱形ABCD中,E是AB边上的中点,作EF∥BC,交对角线AC于点F.若EF=6,则CD的长为()A.24B.18C.16D.122、如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长()A.4B.5C.6D.73、直角三角形ABC中∠A=90°,正方形EFGH的四个顶点在三角形的边上,如图.已知BE=6,FC=2,则正方形EFGH的面积是()A.12B.16C.2D.44、如图;A;B、C、D四点都在⊙O上,∠BOC=110°,则∠BDC等于()
A.110°
B.70°
C.55°
D.125°
5、某印刷厂一月印50万册,二、三月共印132万册,问二、三月平均每月增长的百分数是()A.20%B.-C.10%D.15%6、把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2-4b2=(a-4b)(a+b)C.a2-2a-1=(a-1)2D.(a-b)(a+b)=a2-b2评卷人得分二、填空题(共6题,共12分)7、甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差为2,乙同学成绩的方差为0.4,则甲、乙两同学测试成绩稳定的是____(填甲或乙).8、【题文】如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是______.(只要求填写正确命题的序号)9、比较大小:2-____-2.10、(2006•常德)等腰梯形的上底、下底和腰长分别为4cm、10cm和6cm,则等腰梯形的下底角为____度.11、如图,为半圆的直径,为的中点,交半圆于点以为圆心,为半径画弧交于点,若则图中阴影部分的面积为____(取准确值).12、(2016秋•大祥区校级期中)有理数a、b在数轴的对应点如图所示,则a+b____0.评卷人得分三、判断题(共8题,共16分)13、下列说法中;正确的在题后打“√”.错误的在题后打“×”.
(1)两个有理数相加,其和一定大于其中的一个加数;____(判断对错)
(2)若两个有理数的和为正数,则这两个数都是正数;____(判断对错)
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数;____(判断对错)
(4)如果某数比-5大2,那么这个数的绝对值是3;____(判断对错)
(5)绝对值相等的两个数相加,和为0;____(判断对错)
(6)绝对值相同的两个数相加,和是加数的2倍.____(判断对错)14、过一点A的圆的圆心可以是平面上任何点.____(判断对错)15、-2的倒数是+2.____(判断对错).16、如果=,那么=,=.____(判断对错)17、平分弦的直径垂直于弦____.(判断对错)18、在同一平面内,到三角形三边距离相等的点只有一个19、人体中红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是____m.20、了解某渔场中青鱼的平均重量,采用抽查的方式____(判断对错)评卷人得分四、计算题(共4题,共32分)21、底面半径为5cm、高为12cm的圆锥全面积为____cm2.22、已知,如图,四边形ABCD中,∠A=80°,∠C=80°,∠B=100°,则∠D=____.23、如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=____.24、已知a2+3a+6=0,求代数式a(2a+3)-(a+1)(a-1)的值.评卷人得分五、综合题(共3题,共24分)25、我们把自变量为x的函数记为f(x);对于函数f(x)的自变量取值范围内的任意一个x;都有f(-x)=f(x),那么f(x)就叫做偶函数,对于函数f(x)的自变量取值范围内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
(1)对于反比例函数f(x)=;判断它是奇函数还是偶函数,并说明理由。
(2)已知函数f(x)=是奇函数,求常数a,b;c的值。
(3)已知直线y=x+m与(2)中函数图象恰好有一个交点,求常数m的范围.26、如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后;再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.
(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的x:b的值;
(2)在直线EE′经过原矩形的一个顶点的情形下,连接BE′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?27、如图;已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB;AC分别交于点D,E,DF⊥AC于点F.
(1)求证:点D是AB的中点;
(2)判断DF与⊙O的位置关系;并证明你的结论;
(3)若⊙O的直径为20,cosB=,求阴影部分面积.参考答案一、选择题(共6题,共12分)1、D【分析】【分析】根据已知可得到EF是△ABC的中位线,从而得到BC=2EF,进而求出CD的长.【解析】【解答】解:∵E是AB边上的中点;EF∥BC;
∴EF是△ABC的中位线;
∴BC=2EF=12;
∵四边形ABCD是菱形;
∴CD=BC=12.
故选D.2、C【分析】【分析】连接OC,OD,设⊙O的半径为r,在△AOD和△BOC中,AD和AO,BO和BC上的高都为r,则AO=AD,BO=BC,从而得出BA=AD+BC.【解析】【解答】解:连接OC,OD,设⊙O的半径为r;
∵BC;CD、DA与半⊙O相切;
∴AD和AO的高为r;
∴AO=AD;
同理BO=BC;
∴AB=AO+BO=AD+BC;
又知AB=10;BC=4;
故知AD=6;
故选C.3、A【分析】【分析】设正方形HEFG的边长为a;由∠A=90°,方形EFGH的四个顶点在三角形的边上,通过等角的余角相等可得∠BHE=∠C,于是
Rt△BEH∽Rt△GFC,则a:6=2:a,即可得到方形EFGH的面积.【解析】【解答】解:设正方形HEFG的边长为a;
∵∠A=90°;正方形EFGH的四个顶点在三角形的边上;
∴∠B+∠C=90°;
而∠B+∠BHE=90°;
∴Rt△BEH∽Rt△GFC;
∴a:6=2:a;
∴a2=12;
即方形EFGH的面积为12.
故选A.4、D【分析】
∵圆心角∠BOC和圆周角∠CAB都对
∴∠BOC=2∠CAB;又∠BOC=110°;
∴∠CAB=55°;又四边形ABDC为圆O的内接四边形;
∴∠CAB+∠BDC=180°;
则∠BDC=180°-∠CAB=125°.
故选D
【解析】【答案】根据同弧所对的圆心角等于所对圆周角的2倍;可得圆心角∠BOC是圆周角∠CAB的2倍,进而由∠BOC的度数求出∠CAB的度数,再根据圆内接四边形的对角互补,由四边形ABDC为圆O的内接四边形,可得∠CAB与∠BDC互补,由∠CAB的度数即可求出∠BDC的度数.
5、A【分析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设2,3月份平均每月的增长率是x,那么可以用x表示2,3月份的印刷书籍,然后根据:二、三月共印132万册可列出方程.【解析】【解答】解:设二;三月份平均每月的增长率是x;根据题意得:
50(1+x)+50(1+x)2=132.
解得:x1=20%,x2=-3.2(舍去);
故选:A.6、A【分析】解:A、4a2+4a+1=(2a+1)2;正确;
B、a2-4b2=(a-2b)(a+2b);故此选项错误;
C、a2-2a-1无法运用公式分解因式;故此选项错误;
D、(a-b)(a+b)=a2-b2;是多项式乘法,故此选项错误;
故选:A.
直接利用乘法公式分解因式;进而判断得出答案.
此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.【解析】【答案】A二、填空题(共6题,共12分)7、略
【分析】
∵甲同学成绩的方差为2;乙同学成绩的方差为0.4;
乙的方差小于甲的方差;
∴甲;乙两同学测试成绩稳定的是乙.
故答案为:乙.
【解析】【答案】先比较出甲;乙两名同学成绩的方差;再根据方差的意义得出谁的成绩最稳定.
8、略
【分析】【解析】①当x=1时,y=a+b+c=0,故此选项正确;②对称轴为x==-1,b=2a,故此选项错误;③设该抛物线与x轴交于点(x,0)),则=-1,解得,x=-3;∴ax2+bx+c=0的两根分别为-3和1;故本选项正确;④∵根据抛物线是开口方向向上可以判定a>0,对称轴x==-1,∴b=2a>0,抛物线与y轴交于负半轴,所以所以a-2b+c=a-4a+c=-3a+c>0,故此选项错误【解析】【答案】.①③9、略
【分析】【分析】先估算出2-与-2的值,再根据实数比较的法则进行比较即可.【解析】【解答】解:∵2-≈0.27,-2≈0.23;
∴2->-2.
故答案为:>.10、略
【分析】
如图;过A点作梯形的高AE.
等腰梯形的上底AD=4;下底BC=10,AB=6
根据勾股定理可得BE=3;可得∠B=60°
则等腰梯形的下底角为60度.
【解析】【答案】作图;根据勾股定理可求得BE的长,从而可求得∠B的度数.
11、略
【分析】连接AD,OD,在Rt△CDO中,∵OC=2,OD=4,所以所以∠ODC=60°.∴△AOD是等边三角形.∴S扇形OAD=S△CDO=CO•CD=2.∴SADC=S扇形OAD﹣S△CDO=﹣2因为S扇形CDE=×π×(2)2=3π.∴阴影部分的面积=S半圆﹣(SADC+S扇形CDE)=+2cm2.【解析】【答案】+212、<【分析】【分析】根据各点在数轴上的位置确定出其大小即可.【解析】【解答】解:∵由图可知,a<0<b,|a|>b;
∴a+b<0.
故答案为:<.三、判断题(共8题,共16分)13、×【分析】【分析】可用举特殊例子法解决本题.可以举个例子.
(1)(-3)+(-1)=-4;得出(1)是错误的;
(2)3+(-1)=2;得出(2)是错误的;
(3)由加法法则:同号两数相加;取原来的符号,并把绝对值相加,再根据绝对值的性质可以得出(3)是正确的;
(4)先根据加法的意义求出比-5大2;再根据绝对值的性质可以得出(4)是正确的;
(5)由加法法则可以得出(5)是正确的;
(6)由加法法则可以得出(6)是错误的.【解析】【解答】解:(1)如(-3)+(-1)=-4;故两个有理数相加,其和一定大于其中的一个加数是错误的;×(判断对错)
(2)如3+(-1)=2;故若两个有理数的和为正数,则这两个数都是正数是错误的;×(判断对错)
(3)若两个有理数的和为负数;则这两个数中至少有一个是负数是正确的;√(判断对错)
(4)|-5+2|=3.
故如果某数比-5大2;那么这个数的绝对值是3是正确的;√(判断对错)
(5)绝对值相等的两个数相加;和为0是正确的;√(判断对错)
(6)如-3+3=0.
故绝对值相同的两个数相加;和是加数的2倍是错误的.×(判断对错)
故答案为:×,×,√,√,√,×.14、×【分析】【分析】根据圆心不能为点A进行判断.【解析】【解答】解:过一点A的圆的圆心可以是平面上任何点(A点除外).
故答案为×.15、×【分析】【分析】根据乘积是1的两个数互为倒数即可判断.【解析】【解答】解:∵(-2)(+2)=3-4=-1≠1;
∴-2的倒数不是+2.
故答案为:×.16、√【分析】【分析】运用等式性质求解即可.【解析】【解答】解:∵=;
∴+1=+1,即=;
-1=-1,即=.
∴这两个式子是正确的.
故答案为:√.17、×【分析】【分析】直接根据垂径定理进行解答即可.【解析】【解答】解:∵当被平分的弦为直径时;两直径不一定垂直;
∴此结论错误.
故答案为:×.18、√【分析】【解析】试题分析:根据三角形的性质结合角平分线的性质即可判断.在同一平面内,到三角形三边距离相等的点是三角形三条内角平分线的交点,只有一个,故本题正确.考点:角平分线的性质【解析】【答案】对19、×【分析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】【解答】解:红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是7.7×10-6m;
故答案为:×10-6.20、√【分析】【分析】根据抽样调查和全面调查的区别以及普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解析】【解答】解:了解某渔场中青鱼的平均重量;采用抽查的方式是正确的;
故答案为:√.四、计算题(共4题,共32分)21、略
【分析】【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解析】【解答】解:底面圆的半径为5;则底面周长=10π;
∵底面半径为5cm;高为12cm;
∴圆锥的母线长为13cm;
∴侧面面积=×10π×13=65π;
底面积为=25π;
全面积为:65π+25π=90πcm2.
故答案为90π.22、略
【分析】【分析】根据四边形的内角和是360°,用360°减去∠A、∠C、∠B的度数和,求出∠D的度数是多少即可.【解析】【解答】解:∵∠A=80°;∠C=80°,∠B=100°;
∴∠D=360°-(80°+80°+100°)
=360°-260°
=100°;
即∠D=100°.
故答案为:100°.23、65°【分析】【分析】先根据平行线的性质得∠ABC+∠BCD=180°,根据对顶角相等得∠ABC=∠1=50°,则∠BCD=130°,再利用角平分线定义得到∠ACD=∠BCD=65°,然后根据平行线的性质得到∠2的度数.【解析】【解答】解:∵AB∥CD;
∴∠ABC+∠BCD=180°;
而∠ABC=∠1=50°;
∴∠BCD=130°;
∵CA平分∠BCD;
∴∠ACD=∠BCD=65°;
∵AB∥CD;
∴∠2=∠ACD=65°.
故答案为65°.24、略
【分析】
原式利用单项式乘以多项式;平方差公式化简,去括号合并得到最简结果,将已知等式变形后代入计算即可求出值.
此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.【解析】解:原式=2a2+3a-a2+1=a2+3a+1;
由a2+3a+6=0,得到a2+3a=-6;
则原式=-6+1=-5.五、综合题(共3题,共24分)25、略
【分析】【分析】(1)由于f(-x)=-=-f(x),则根据新定义可判断反比例函数f(x)=是奇函数;
(2)根据奇函数的定义得到f(-x)=-f(x)=-(x2-2x)=-x2+2x,于是得到自变量为-x的函数关系式为f(-x)=-(-x)2-2(-x),所以当x<0时,函数关系式为f(x)=-x2-2x,从而得到a、b;c的值;
(3)先画出大致图象,如图,讨论:当x≥0时,利用方程x2-2x=x+m有相等实数解得到m=-,则根据图象可得当m<-时,直线y=x+m与(2)中函数图象恰好有一个交点;当x<0时,利用方程-x2-2x=x+m有相等实数解得m=,则利用图象得到当m>时,直线y=x+m与(2)中函数图象恰好有一个交点.【解析】【解答】解:(1)反比例函数f(x)=是奇函数.理由如下:
∵f(-x)==-=-f(x);
∴反比例函数f(x)=是奇函数;
(2)∵x≥0时,f(x)=x2-2x;
而函数f(x)是奇函数;
∴f(-x)=-f(x)=-(x2-2x)=-x2+2x;
∵f(-x)=-(-x)2-2(-x);
∴当x<0时,f(x)=-x2-2x;
∴a=-1,b=-2;c=0;
(3)如图,当x≥0时,方程x2-2x=x+m有相等实数解,直线y=x+m与抛物线y=x2-2x(x≥0)只有一个公共点,即32+4m=0,解得m=-,所以当m<-时;直线y=x+m与(2)中函数图象恰好有一个交点;
当x<0时,方程-x2-2x=x+m有相等实数解,直线y=x+m与抛物线y=-x2-2x(x<0)只有一个公共点,即32-4m=0,解得m=,所以当m>时;直线y=x+m与(2)中函数图象恰好有一个交点;
综上所述,m的范围为m>或m<-.26、略
【分析】【分析】(Ⅰ)由AB=a,AD=b,BE=x,S梯形ABEF=S梯形CDFE;结合梯形的面积公式可证得AF=EC;
(Ⅱ)(1)根据题意,画出图形,结合梯形的性质求得x:b的值;
(2)直线EE′经过原矩形的顶点D时,可证明四边形BE′EF是平行四边形,则BE′∥EF;当直线EE′经过原矩形的顶点A时,BE′与EF不平行.【解析】【解答】(Ⅰ)证明:∵AB=a,AD=b,BE=x,S梯形ABEF=S梯形CDFE;
∴a(x+AF)=a(EC+b-AF);
∴2AF=EC+(b-x).
又∵EC=b-x;
∴2AF=2EC.
∴AF=EC.
(Ⅱ)解:(1)当直线EE′经过原矩形的顶点D时;如图(一)
∵EC∥E′B′;
∴=;
由EC=b-x,E′B′=EB=x,DB′=DC+CB′=2a,
得;
∴x:b=.
当直线E′E经过原矩形的顶点A时;如图(二)
在梯形AE′B′D中;
∵EC∥E′B′;点C是DB′的中点;
∴CE=(AD+E′B′);
即b-x=(b+x);
∴x:b=.
(2)如图(一);当直线EE′经过原矩形的顶点D时,BE′∥EF;
证明:连接BF;
∵FD∥BE;FD=BE;
∴四边形FBED是平行四边形;
∴FB∥DE,FB=DE,
又∵EC∥E′B′;点C是DB′的中点;
∴DE=EE′;
∴FB∥EE′;FB=EE′;
∴四边形BE′EF是平行四边形;
∴BE′∥EF.
如图(二);当直线EE′经过原矩形的顶点A时,显然BE′与EF不平行;
设直线EF与BE′交于点G;过点E′作E′M⊥BC于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产行业业务员工作总结
- 运动品牌的市场推广计划
- 【八年级下册历史】第16课 独立自主的和平外交 同步练习
- 金属行业行政后勤运营总结
- 2023年高考语文试卷(上海)(春考)(空白卷)
- 2024年美术教案集锦5篇
- 2024年煤矿应急预案
- 红光十字线激光器行业市场发展及发展趋势与投资战略研究报告
- 2025保险合同协议书大全
- 2024年度天津市公共营养师之二级营养师综合练习试卷B卷附答案
- 2024年纪检监察综合业务知识题库及答案(新)
- 师德师风考核实施方案
- 【真题】2023年南京市中考语文试卷(含答案解析)
- 膀胱憩室护理查
- 2024年河南省水务规划设计研究有限公司人才招聘笔试参考题库附带答案详解
- 工程制图知识要点
- 2024山东能源集团中级人才库选拔高频考题难、易错点模拟试题(共500题)附带答案详解
- 视频后期剪辑述职报告
- 个人就业能力展示
- 银行对公业务课件
- 水吧管理方案
评论
0/150
提交评论