下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲几何证明选讲1. (2022·江苏卷)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE. 求证:∠E=∠C. 证明连接OD,由于BD=DC,O为AB的中点, 所以OD∥AC,于是∠ODB=∠C. 由于OB=OD,所以∠ODB=∠B于是∠B=∠C. 由于点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角, 故∠E=∠B.所以∠E=∠C.2. (2011·江苏卷)如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2),圆O1的弦AB交圆O2于点C(O1不在AB上). 求证:AB∶AC为定值. 证明如图,连接AO1并延长,分别交两圆于点E和点D.连接BD,CE.由于圆O1与圆O2内切于点A,所以点O2在AD上,故AD,AE分别为圆O1,圆O2的直径.从而∠ABD=∠ACE=eq\f(π,2).所以BD∥CE,于是eq\f(AB,AC)=eq\f(AD,AE)=eq\f(2r1,2r2)=eq\f(r1,r2).所以AB∶AC为定值.3. (2010·江苏卷)AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC. 证明连接OD,则:OD⊥DC, 又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.4. 如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA. 证明连接OT,由于AT是切线,所以OT⊥AP. 又由于∠PAQ是直角,即AQ⊥AP, 所以AB∥OT, 所以∠TBA=∠BTO. 又OT=OB,所以∠OTB=∠OBT, 所以∠OBT=∠TBA, 即BT平分∠OBA.5.如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P. (1)证明:OM·OP=OA2; (2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°. 证明(1)由于MA是圆O的切线,所以OA⊥AM.又由于AP⊥OM,在Rt△OAM中,由射影定理知,OA2=OM·OP. (2)由于BK是圆O的切线,BN⊥OK,同(1),有OB2=ON·OK,又OB=OA,所以OP·OM=ON·OK, 即eq\f(ON,OP)=eq\f(OM,OK).又∠NOP=∠MOK, 所以△ONP∽△OMK,故∠OKM=∠OPN=90°.6.(2022·辽宁卷)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F. (1)求证:AB为圆的直径; (2)若AC=BD,求证:AB=ED. 证明(1)由于PD=PG,所以∠PDG=∠PGD. 由于PD为切线,故∠PDA=∠DBA, 又由于∠PGD=∠EGA, 故∠DBA=∠EGA. 所以∠DBA+∠BAD=∠EGA+∠BAD, 从而∠BDA=∠PFA. 由于AF⊥EP,所以∠PFA=90°,于是∠BDA=90°. 故AB是直径. (2)连接BC,DC. 由于AB是直径,故∠BDA=∠ACB=90°. 在Rt△BDA与Rt△ACB中,AB=BA,AC=BD, 从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业自动化生产线厂房租赁合同4篇
- 2024离婚合同书:不含财产分割案例版B版
- 个人房产抵押合同
- 2024年04月交通银行股份有限公司毕节分行(贵州)招考1名劳务人员笔试历年参考题库附带答案详解
- 2024物业公司收费标准合同
- 2025年度不锈钢复合材料应用研发与推广协议3篇
- 2024年03月贵州中国农业银行贵州省分行春季招考笔试历年参考题库附带答案详解
- 2025年度农产品溯源体系建设合作协议范本3篇
- 二零二五年度草牧场资源综合利用与承包合同3篇
- 专职护林员2024年度服务协议版B版
- 骨科手术后患者营养情况及营养不良的原因分析,骨伤科论文
- GB/T 24474.1-2020乘运质量测量第1部分:电梯
- GB/T 12684-2006工业硼化物分析方法
- 定岗定编定员实施方案(一)
- 高血压患者用药的注意事项讲义课件
- 特种作业安全监护人员培训课件
- (完整)第15章-合成生物学ppt
- 太平洋战争课件
- 封条模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖浆
- 货代操作流程及规范
评论
0/150
提交评论