2022北京通州高一(上)期末数学(教师版)_第1页
2022北京通州高一(上)期末数学(教师版)_第2页
2022北京通州高一(上)期末数学(教师版)_第3页
2022北京通州高一(上)期末数学(教师版)_第4页
2022北京通州高一(上)期末数学(教师版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页/共1页2022北京通州高一(上)期末数学本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则()A. B. C. D.2.已知,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为4.下列各式中,正确的是()A. B.C. D.5.计算()A. B. C. D.6.已知函数,则的()A.最小正周期为,最大值为 B.最小正周期为,最大值为C.最小正周期为,最大值为 D.最小正周期为,最大值为7.已知函数表示为设,的值域为,则()A., B.,C., D.,8.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确9.已知函数(,,)的图象如图所示,则()A.B对于任意,,且,都有C.,都有D.,使得10.已知关于的方程()的根为负数,则的取值范围是()A. B. C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.不等式的解集为_____.12已知,,则_____;_____.13.已知,且第三象限角,则_____;_____.14.化简_____.15.某池塘里原有一块浮萍,浮萍蔓延后的面积(单位:平方米)与时间(单位:月)的关系式为(且)图象如图所示.则下列结论:①浮萍蔓延每个月增长的面积都相同;②浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的;③浮萍蔓延每个月增长率相同,都是;④浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少.其中正确结论的序号是_____.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.17.已知函数,且的图象经过点.(1)求的值;(2)求在区间上的最大值;(3)若,求证:在区间内存在零点.18.如图,在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边与单位圆交于点,.(1)求的值;(2)将射线绕坐标原点按逆时针方向旋转后与单位圆交于点,求的值;(3)若点与关于轴对称,求的值.19.已知函数.(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.20.某地区每年各个月份月平均最高气温近似地满足周期性规律,因此第个月的月平均最高气温可近似地用函数来刻画,其中正整数表示月份且,例如表示月份,和是正整数,,.统计发现,该地区每年各个月份的月平均最高气温基本相同,月份的月平均最高气温为摄氏度,是一年中月平均最高气温最低的月份,随后逐月递增直到月份达到最高为摄氏度.(1)求的解析式;(2)某植物在月平均最高气温低于摄氏度的环境中才可生存,求一年中该植物在该地区可生存的月份数.21.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数的“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.

参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】D【解析】【分析】利用交集的定义进行求解即可.【详解】因为,,所以.故选:D.2.【答案】C【解析】【分析】利用不等式的性质和充要条件的判定条件进行判定即可.【详解】因为,,所以成立;又,,所以成立;所以当时,“”是“”的充分必要条件.故选:C.3.【答案】A【解析】【分析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.4.【答案】C【解析】【分析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.5.【答案】D【解析】【分析】利用诱导公式化简可得结果.【详解】由诱导公式可得.故选:D.6.【答案】B【解析】【分析】利用辅助角公式化简得到,求出最小正周期和最大值.【详解】所以最小正周期为,最大值为2.故选:B7.【答案】A【解析】【分析】根据所给函数可得答案.【详解】根据题意得,的值域为.故选:A.8.【答案】D【解析】【分析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.9.【答案】C【解析】【分析】根据给定函数图象求出函数的解析式,再逐一分析各个选项即可判断作答.【详解】观察函数的图象得:,令的周期为,则,即,,由,且得:,于是有,对于A,,A不正确;对于B,取且,满足,,且,而,,此时,B不正确;对于C,,,,即,都有,C正确;对于D,由得:,解得:,令,解得与矛盾,D不正确.故选:C10.【答案】D【解析】【分析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.【答案】【解析】【分析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可.【详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}.故答案为.【点睛】本题考查了一元二次不等式的解法与应用问题,是基础题目.12.【答案】①.②.【解析】【分析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【详解】因为,则,故.故答案为:;213.【答案】①.##②.##0.96【解析】【分析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【详解】因,且是第三象限角,则,所以,.故答案为:;14.【答案】-2【解析】【分析】利用余弦的二倍角公式和正切的商数关系可得答案.【详解】.故答案为:.15.【答案】②④【解析】【分析】由,可求得的值,可得出,计算出萍蔓延月至月份增长的面积和月至月份增长的面积,可判断①的正误;计算出浮萍蔓延个月后的面积和浮萍蔓延个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【详解】由已知可得,则.对于①,浮萍蔓延月至月份增长的面积为(平方米),浮萍蔓延月至月份增长的面积为(平方米),①错;对于②,浮萍蔓延个月后的面积为(平方米),浮萍蔓延个月后的面积为(平方米),所以,浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的,②对;对于③,浮萍蔓延第至个月的增长率为,所以,浮萍蔓延每个月增长率相同,都是,③错;对于④,浮萍蔓延到平方米所经过的时间、蔓延到平方米所经过的时间的和蔓延到平方米的时间分别为、、,则,,,所以,,所以,浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少,④对.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.【答案】(1)(2)的值是,最小值是,无最大值【解析】【分析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴.【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.17.【答案】(1)(2)(3)证明见解析【解析】【分析】(1)将点代入解析式求解;(2)根据函数单调性求解最大值;(3)零点存在性定理证明在区间内存在零点.【小问1详解】因为函数,且的图象经过点,所以.所以.【小问2详解】因为,所以.所以在区间上单调递减.所以在区间上的最大值是.所以.所以在区间上的最大值是.【小问3详解】因为,所以.因为,,所以,又在区间上的图象是一条连续不断的曲线,由零点存在性定理可得:在区间内存在零点.18.【答案】(1)(2)(3)【解析】【分析】(1)由三角函数的定义得到,再根据且点在第一象限,即可求出;(2)依题意可得,再由(1),即可得解;(3)首先求出的坐标,连接交轴于点,即可得到,再利用二倍角公式计算可得;【小问1详解】解:因为角终边与单位圆交于点,且,由三角函数定义,得.因为,所以.因为点在第一象限,所以.【小问2详解】解:因为射线绕坐标原点按逆时针方向旋转后与单位圆交于点,所以.因为,所以.【小问3详解】解:因为点与关于轴对称,所以点的坐标是.连接交轴于点,所以.所以.所以的值是.19.【答案】(1)的最大值,(2)【解析】【分析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,所以.所以在上的单调递增区间是.20.【答案】(1),,为正整数(2)一年中该植物在该地区可生存的月份数是【解析】【分析】(1)先利用月平均气温最低、最高的月份求出周期和及值,再利用最低气温和最高气温求出、值,即得到所求函数的解析式;(2)先判定函数的单调性,再代值确定符合要求的月份即可求解.【小问1详解】解:因为月份的月平均最高气温最低,月份的月平均最高气温最高,所以最小正周期.所以.所以,.因为,所以.因为月份的月平均最高气温为摄氏度,月份的月平均最高气温为摄氏度,所以,.所以,.所以的解析式是,,为正整数.【小问2详解】解:因为,,为正整数.所以在区间上单调递增,在区间上单调递减.因为某植物在月平均最高气温低于摄氏度的环境中才可生存,且,,所以该植物在1月份,2月份,3月份可生存.又,所以该植物在11月份,12月份也可生存.即一年中该植物在该地区可生存的月份数是.21.【答案】(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】【分析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论