版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年沪教版高一数学下册阶段测试试卷868考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、下面几何体的主视图是()
A.
B.
C.
D.
2、【题文】设函数的定义域为对于任意的则不等式的解集为()A.B.C.D.3、【题文】已知都是正实数,且满足则的最小值为()A.12B.10C.8D.64、【题文】如图所示图形中,是四棱锥的三视图的是()5、飞机沿水平方向飞行,在A处测得正前下方地面目标C的俯角为30°,向前飞行10000米,到达B处,此时测得目标C的俯角为75°,这时飞机与地面目标的距离为()A.5000米B.5000米C.4000米D.米6、设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=lnx﹣x,则有()A.B.C.D.评卷人得分二、填空题(共7题,共14分)7、函数的定义域为____.8、【题文】若函数则f(x)的单调递增区间是9、【题文】函数的定义域是★10、【题文】已知是上的奇函数,且对任意都。
有成立,则____;
____.11、【题文】若f(10x)=x,则f(5)=____.12、将51转化为二进制数得____.13、如图,在山底A处测得山顶B的仰角∠CAB=45°,沿倾斜角为30°的斜坡AS走2000米至S点,又测得山顶∠DSB=75°,则山高BC为______米.评卷人得分三、证明题(共7题,共14分)14、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.15、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.16、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.17、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.18、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.19、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.20、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、计算题(共1题,共8分)21、计算:.评卷人得分五、作图题(共2题,共14分)22、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.23、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.评卷人得分六、综合题(共1题,共3分)24、已知点A(-2,0),点B(0,2),点C在第二、四象限坐标轴夹角平分线上,∠BAC=60°,那么点C的坐标为____.参考答案一、选择题(共6题,共12分)1、B【分析】
从正面看易得第一层有3个正方形;第二层左右两边各有一个正方形.
故选B.
【解析】【答案】找到从正面看所得到的图形即可;注意所有的看到的棱都应表现在主视图中.
2、B【分析】【解析】
试题分析:令则h(-1)=f(-1)-(-2+4)=0,又∵∴∴h(x)在上是增函数,∴可化为h(x)>0,即h(x)>h(-1),利用单调性可知x>-1;故选B
考点:本题考查了导函数的运用。
点评:构造函数,然后利用函数的单调性把抽象函数的解集问题转化为函数的大小比较问题解决【解析】【答案】B3、C【分析】【解析】
试题分析:
所以那么则可得.
考点:1.对数运算;2.基本不等式.【解析】【答案】C4、B【分析】【解析】简单几何体和球【解析】【答案】B5、B【分析】【解答】由题意可得,AB=10000,A=30°,C=45°,△ABC中由正弦定理可得,故选B。
【分析】中档题,解题的关键是根据已知题意把所求的实际问题转化为数学问题,结合图形分析,恰当选用正弦定理。6、A【分析】【解答】解:当x>1时,故函数f(x)在(1,+∞)单调递减;
故
即.
或者根据图象的对称性;离x=1距离近的函数值大解决.
故选A
【分析】当x≥1时;f(x)=lnx﹣x,易判断f(x)为单调递减的;
又它的图象关于直线x=1对称,离x=1距离近的函数值大,转化为判断与1的距离问题.二、填空题(共7题,共14分)7、略
【分析】
要使函数的解析式有意义。
自变量x须满足:≠kπ+k∈Z
解得:
故函数的定义域为
故答案为
【解析】【答案】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值范围,即可得到函数的定义域.
8、略
【分析】【解析】由于函数在区间内是增函数,所以所以0<1,所以f(x)的单调递增区间为【解析】【答案】9、略
【分析】【解析】略【解析】【答案】10、略
【分析】【解析】略【解析】【答案】11、略
【分析】【解析】由题意10x=5,故x=lg5,即f(5)=lg5【解析】【答案】lg512、110110(2)【分析】【解答】解:51÷2=251
25÷2=121
12÷2=60
6÷2=30
3÷2=11
1÷2=01
故51(10)=110011(2)
故答案为:110110(2)
【分析】利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.13、略
【分析】解:依题意;过S点作SE⊥AC于E,SH⊥AB于H;
∵∠SAE=30°;AS=2000米;
∴CD=SE=AS•sin30°=1000米;
依题意;在Rt△HAS中,∠HAS=45°-30°=15°;
∴HS=AS•sin15°;
在Rt△BHS中;∠HBS=30°;
∴BS=2HS=4000sin15°;
在Rt△BSD中;
BD=BS•sin75°
=4000sin15°•sin75°
=4000sin15°•cos15°
=2000×sin30°
=1000米.
∴BC=BD+CD=1000+1000=2000米;
故答案为:2000.
作出图形;过点S作SE⊥AC于E,SH⊥AB于H,依题意可求得SE在△BDS中利用正弦定理可求BD的长,从而可得山顶高BC.
本题考查正弦定理的应用,考查作图与计算的能力,关键是将实际问题转化为数学问题中的解三角形的问题解答;属于中档题.【解析】2000三、证明题(共7题,共14分)14、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.15、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.16、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=17、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.18、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.19、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.20、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、计算题(共1题,共8分)21、略
【分析】【分析】求出=2,sin45°=,(3-π)0=1,=4,代入求出即可.【解析】【解答】解:原式=2-4×+1+4;
=2-2+1+4;
=5.五、作图题(共2题,共14分)22、解:由题意作示意图如下;
【分析】【分析】由题意作示意图。23、解:程序框图如下:
【分析】【分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度劳动合同终止及员工安置补偿协议2篇
- 二零二五年度户外广告牌安装与城市形象宣传合同3篇
- 二零二五年度个人商铺买卖合同协议
- 二零二五年度国际贸易政策分析与市场进入咨询合同
- 2025年度个人房屋装修贷款合同7篇
- 2025年度内控制度咨询与内部控制流程再造合同
- 二零二五年度协议离婚财产清算与分配专业合同3篇
- 2025年度农业生态环境保护与补偿合同3篇
- 2025年度摩托车租赁与赛事运营管理合同3篇
- 二零二五版镍矿市场准入与资质认证合同4篇
- 2024版义务教育小学数学课程标准
- 智能护理:人工智能助力的医疗创新
- 国家中小学智慧教育平台培训专题讲座
- 5G+教育5G技术在智慧校园教育专网系统的应用
- 服务人员队伍稳定措施
- VI设计辅助图形设计
- 浅谈小学劳动教育的开展与探究 论文
- 2023年全国4月高等教育自学考试管理学原理00054试题及答案新编
- 河北省大学生调研河北社会调查活动项目申请书
- JJG 921-2021环境振动分析仪
- 两段焙烧除砷技术简介 - 文字版(1)(2)课件
评论
0/150
提交评论