版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届西安市高三第五次模拟考数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.2.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.3.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.4.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.5.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.36.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是17.已知集合,,则等于()A. B. C. D.8.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.9.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米10.定义,已知函数,,则函数的最小值为()A. B. C. D.11.已知实数,则的大小关系是()A. B. C. D.12.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为________14.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.15.已知,则__________.16.设实数,若函数的最大值为,则实数的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.18.(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.19.(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.20.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).21.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(l)求直线的普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且.求直线的方程.22.(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.2.C【解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.3.D【解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).4.D【解析】
由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.5.D【解析】
在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.6.A【解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.7.B【解析】
解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.8.D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.9.B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.10.A【解析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.11.B【解析】
根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.12.C【解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。14.(或写成)【解析】试题分析:设,取中点则,因此,所以,因为在单调递增,最大值为所以单调增区间是,最大值为考点:函数最值,函数单调区间15.【解析】
首先利用,将其两边同时平方,利用同角三角函数关系式以及倍角公式得到,从而求得,利用诱导公式求得,得到结果.【详解】因为,所以,即,所以,故答案是.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,倍角公式,诱导公式,属于简单题目.16.【解析】
根据,则当时,,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,又当时,,即.当时,显然成立;当时,由等价于,令,,当时,,单调递增,当时,,单调递减,,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)证明见解析.【解析】
(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;(2)设点,,,由,,结合斜率公式化简得出,,即,满足,由的任意性,得出直线恒过一个定点.【详解】(1)依题意得,解得即椭圆:;(2)设点,,其中,由,得,即,注意到,于是,因此,满足由的任意性知,,,即直线恒过一个定点.【点睛】本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.18.(1)见解析;(2)(﹣∞,0]【解析】
(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.【详解】(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)内递增,在(﹣,0)内递减,在(0,+∞)内递增,∴f(x)的极大值为,∴当x<0时,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,则g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,则h(x)在(0,+∞)上单调递增,且x→0+时,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴实数k的取值范围是(﹣∞,0].【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.(1)(2)证明见解析(3)证明见解析【解析】
(1)由题意可得,,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【详解】(1),即,化简可得.令,,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在上,,所以在上单调递减.在上,,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,,,因而在上单调递增.当时,,,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则..设,,当时,.时,,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.20.(1)证明见解析;(2)2【解析】
(1)在中,利用勾股定理,证得,又由题设条件,得到,利用线面垂直的判定定理,证得平面,进而得到;(2)设三棱台和三棱柱的高都为上、下底面之间的距离为,根据棱台的体积公式,列出方程求得,得到,即可求解.【详解】(1)由题意,在中,,,所以,可得,因为,可得.又由,,平面,所以平面,因为平面,所以.(2)因为,可得,令,,设三棱台和三棱柱的高都为上、下底面之间的距离为,则,整理得,即,解得,即,又由,所以.【点睛】本题主要考查了直线与平面垂直的判定与应用,以及几何体的体积公式的应用,其中解答中熟记线面位置关系的判定定理与性质定理,以及熟练应用几何体的体积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江警官职业学院《品牌形象专项设计一》2023-2024学年第一学期期末试卷
- 中国民用航空飞行学院《现代交换技术》2023-2024学年第一学期期末试卷
- 郑州旅游职业学院《当代资本主义》2023-2024学年第一学期期末试卷
- 小学预算编制收支审批制度
- 浙江传媒学院《应用程序设计实验》2023-2024学年第一学期期末试卷
- 漳州城市职业学院《长跑》2023-2024学年第一学期期末试卷
- 深度学习在元数据分析中的探索
- 双十二品牌提升策略模板
- 专业基础-房地产经纪人《专业基础》点睛提分卷3
- 2024-2025学年江苏省无锡市江阴市八年级(上)期末数学试卷
- 智联招聘在线测评题
- DB3418T 008-2019 宣纸润墨性感官评判方法
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
- 生猪屠宰兽医卫生检验人员理论考试题及答案
- 2024年驻村第一书记工作总结干货3篇
- 教室装修施工计划
- 诊疗方案自查整改报告(2篇)
- 沪教版四年级上册数学列式计算(附参考答案)
- 医院侵害未成年人案件强制报告制度
- 眼的解剖结构与生理功能课件
- DL-T 572-2021电力变压器运行规程-PDF解密
评论
0/150
提交评论