版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形的高、中线与角平分线人教版八年级数学上册第十一章三角形教学目标1.掌握三角形的高,中线及角平分线的概念.(重点)2.掌握三角形的高,中线及角平分线的画法.3.掌握钝角三角形的两短边上高的画法.(难点)新知导入
定义
图示垂线线段中点角平分线OBAAB当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线把一条线段分成两条相等的线段的点一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线新知讲解你还记得“过一点画已知直线的垂线”吗?012345012345678910012345678910012345678910012345012345放、靠、过、012345678910012345012345012345678910012345012345画.思考:过三角形的一个顶点,你能画出它的对边的垂线吗?新知讲解三角形的高一三角形的高的定义A从三角形的一个顶点,BC向它的对边所在直线作垂线,顶点和垂足D之间的线段叫作三角形的高线,简称三角形的高.如右图,线段AD是BC边上的高.和垂足的字母.注意!标明垂直的记号012345678910012345012345新知讲解思考:你还能画出一条高来吗?一个三角形有三个顶点,应该有三条高.新知讲解(1)你能画出这个三角形的三条高吗?(2)
这三条高之间有怎样的位置关系?O(3)
锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高交于同一点;锐角三角形的三条高都在三角形的内部.锐角三角形的三条高如图所示;新知讲解直角边BC边上的高是
;直角边AB边上的高是
;(2)AC边上的高是
;直角三角形的三条高ABC(1)画出直角三角形的三条高,ABBC它们有怎样的位置关系?D直角三角形的三条高交于直角顶点.BD新知讲解钝角三角形的三条高
(1)你能画出钝角三角形的三条高吗?ABCDEF(2)AC边上的高呢?AB边上呢?BC边上呢?BFCEAD新知讲解ABCDF(3)钝角三角形的三条高交于一点吗?(4)它们所在的直线交于一点吗?OE钝角三角形的三条高不相交于一点;钝角三角形的三条高所在直线交于一点.典例讲解例1
作△ABC的边AB上的高,下列作法中,正确的是(
)方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.D完成题单上对应的变式练习1-4典例讲解例2如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为____.方法总结:可利用面积相等作桥梁(但不求面积)求三角形的高,此解题方法通常称为“面积法”.完成题单上对应的变式练习5-6新知讲解在三角形中,连接一个顶点与它对边中点的线段,叫作这个三角形的中线(median).AE是BC边上的中线.三角形的“中线”BACABE=ECE三角形的中线二新知讲解(1)在纸上画出一个锐角三角形,确定它的中线.
你有什么方法?它有多少条中线?它们有怎样的位置关系?议一议三条中线,交于一点新知讲解(2)钝角三角形和直角三角形的中线又是怎样的?折一折,画一画,并与同伴交流.
三角形的三条中线交于一点,这个交点就是三角形的重心.要点归纳完成对应的变式练习7题新知讲解问题2:如图,AD为△ABC的中线,猜想△ABD与△ACD的面积关系,并证明.【归纳总结】:
三角形的中线将三角形分成面积相等的两部分.例3在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为10和18两部分,求腰长AB.完成对应的变式练习8-11题新知讲解BAC用量角器画最简便,用圆规也能.
在一张纸上画出一个一个三角形并剪下,将它的一个角对折,使其两边重合.折痕AD即为三角形的∠A的平分线.ABCAD新知讲解三角形的角平分线的定义:
在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.12ABCD注意:“三角形的角平分线”是一条线段.∠1=∠2新知讲解每两列分别准备锐角三角形、钝角三角形和直角三角形纸片各一个.
思考:
(1)你能分别画出这三个三角形的三条角平分线吗?
(2)你能用折纸的办法得到它们吗?(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?做一做新知讲解三角形的三条角平分线交于同一点.三角形角平分线的性质例题讲解解:∵AD是△ABC的角平分线,∠BAC=68°,
∴∠DAC=∠BAD=34°.
在△ABD中,∠B+∠ADB+∠BAD=180°,∴∠ADB=180°-∠B-∠BAD=180°-36°-34°=110°.
例4
如图,在△ABC中,∠BAC=68°,∠B=36°,AD是△ABC的一条角平分线,求∠ADB的度数.ABDC完成对应的变式练习12题新知讲解三角形的重要线段概念图形表示法三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段∵AD是△ABC的高线.∴AD⊥BC∠ADB=∠ADC=90°.三角形的中线三角形中,连结一个顶点和它对边中的线段∵AD是△ABC的BC上的中线.∴BD=CD=½BC.三角形的角平分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度楼顶景观照明设施安装与维护合同4篇
- 2024版陶瓷产品购销合同范本
- 2025年桶装水销售区域市场调研与分析合同样本3篇
- 二零二五年度果树租赁与果树种植项目投资合同3篇
- 二零二五版仓储搬运操作服务合同2篇
- 二零二五版出租汽车承包合同车辆报废及更新政策3篇
- 二零二五年度担保合同争议解决与会计处理办法合同3篇
- 2025年度机械设备买卖合同范本3篇
- 2025年度漫画连载作品授权手机游戏开发合同4篇
- 二零二五南宁市租赁市场租赁合同押金退还协议
- 焊锡膏技术培训教材
- 函授本科《小学教育》毕业论文范文
- 高考高中英语单词词根词缀大全
- 江苏省泰州市姜堰区2023年七年级下学期数学期末复习试卷【含答案】
- 药用辅料聚乙二醇400特性、用法用量
- 《中小学机器人教育研究(论文)11000字》
- GB/T 22085.1-2008电子束及激光焊接接头缺欠质量分级指南第1部分:钢
- 全过程人民民主学习心得体会
- 2023年上海期货交易所招聘笔试题库及答案解析
- 附图1岑溪市行政区划图
- word企业管理封面-可编辑
评论
0/150
提交评论